
A 3/4-Approximation Algorithm for

Maximum ATSP with Weights Zero and One

Markus Bläser

Institut für Theoretische Informatik, ETH Zürich
CH-8092 Zürich, Switzerland

mblaeser@inf.ethz.ch

Abstract. We present a polynomial time 3/4-approximation algorithm
for the maximum asymmetric TSP with weights zero and one.
As applications, we get a 5/4-approximation algorithm for the (mini-
mum) asymmetric TSP with weights one and two and a 3/4-approxi-
mation algorithm for the Maximum Directed Path Packing Problem.

1 Introduction

Traveling salesperson problems with weights one and two have been studied
for many years. They are an important special case of traveling salesperson
problems with triangle inequality. Papadimitriou and Yannakakis [8] showed that
the undirected minimization problem is MaxSNP-complete. On the other hand,
they presented a 7/6-approximation algorithm with polynomial running time.
Vishwanathan [9] considered the corresponding asymmetric problem ATSP(1, 2)
and gave a 17/12-approximation algorithm.

Let MaxATSP(0, 1) be the following problem: Given a directed complete loop-
less graph with edge weights zero and one, compute a TSP tour of maximum
weight. MaxATSP(0, 1) is a generalization of ATSP(1, 2) in the following sense:
Vishwanathan [9] showed that any (1−α)-approximation algorithm for the for-
mer problem transforms into an (1 + α)-algorithm for the latter when replacing
weight two with weight zero. (The other direction is not known to be true.)

By computing a matching of maximum weight and patching the edges to-
gether arbitrarily, one easily obtains a polynomial time 1/2-approximation al-
gorithm for MaxATSP(0, 1). (Note that each edge has weight at least zero, thus
we cannot loose any weight during the patching process.) Vishwanathan [9] was
the first to improve on this by designing a 7/12-approximation algorithm with
polynomial running time. In 1994, Kosaraju, Park, and Stein [6] gave a 48/63-
approximation algorithm with polynomial time that also worked for maximum
ATSP with arbitrary nonnegative weights. In their work, they also formulated
the so-called path coloring lemma, which will be crucial for our algorithm.
Bläser and Siebert [3] obtained a 4/3-approximation algorithm with running
time O(n5/2) for ATSP(1, 2). This algorithm can also be modified to give a 2/3-
approximation algorithm for MaxATSP(0, 1) with the same running time [4]. Fi-
nally, Kaplan et al. [5] generalize this result by designing a 2/3-approximation



algorithm that works for maximum ATSP with arbitrary nonnegative weights
but has a worse running time.

Closely related to MaxATSP(0, 1) is the Directed Path Packing Problem DPP.
Here we are given a directed graph G = (V, E). The aim is to find a subset P
of node-disjoint paths of G such that the number of edges in P is maximized.
By giving edges in G weight one and “non-edges” weight zero, any path packing
transforms into a TSP tour by patching the paths arbitrarily together. On the
other hand, any TSP tour yields a path packing by discarding all edges of weight
zero. The only exception is the case where an optimum TSP tour has weight n.
Here one weight one edge has to be discarded.

Our main result is a 3/4-approximation algorithm for MaxATSP(0, 1) with
polynomial running time. As corollaries, we get a 5/4-approximation algorithm
for ATSP(1, 2) and a 3/4-approximation algorithm for DPP.

1.1 Notations and Conventions

For a set of nodes V , K(V ) denotes the set of all edges (u, v) with u 6= v. In
other words, (V, K(V )) is the complete loopless graph with node set V .

For a multigraph H and an edge e of H , mH(e) ∈ N denotes the multiplicity
of e in H , that is, the number of copies of e that are present in H . If H is clear
from the context, we will also omit the subscript H .

A multigraph is called 2-path-colorable if its edges can be colored with two
colors such that each color class is a collection of node-disjoint paths. (Double
edges are not allowed in such a collection of paths.)

1.2 Outline of our Algorithm

Kosaraju, Park, and Stein [6] formulate the so-called path coloring lemma. It
states that if each node of a multigraph H has indegree and outdegree at most
two and total degree at most three and H does not contain any 2-cycles (that
is, a cycle with exactly two edges) or triple edges, then H is 2-path colorable.
Kosaraju, Park, and Stein proceed with computing a cycle cover and a matching.
(A cycle cover of a graph is a collection of node-disjoint directed cycles such that
each node belongs to exactly one cycle.) If the matching is carefully chosen, then
the union of the cycle cover and the matching fulfills the premises of the path
coloring lemma and henceforth, is 2-path-colorable. (One also has to deal with
the 2-cycles in the cycle cover separately, the interested reader is referred to the
original work.) If one now takes the color class with the larger weight and patches
the paths arbitrarily together, one gets a TSP tour that has at least half the
weight of the combined weight of the cycle cover and the matching. The weight
of an optimum cycle cover is at least the weight of an optimum TSP tour and the
weight of an optimum matching is at least half the weight of an optimum TSP
tour. Thus in the ideal case, this would yield an 3/4-approximation. However,
Kosaraju, Park, and Stein have to deal with 2-cycles and have to avoid triple
edges. Therefore, they only get a 48/63-approximation. This approach is refined
in subsequent works [2, 7].



In this work, we directly compute a maximum weight multigraph that fulfills
the premises of the path coloring lemma. This is done via an LP approach
(Section 3). The fractional solution H∗ is then rounded to an integer one via
an iterated decomposition scheme (Section 4). Finally the integer solution is
transformed into a TSP tour (or Path Packing) via the path coloring lemma.

2 Admissible Multigraphs

A directed multigraph is called admissible, if

1. the indegree and outdegree of each node is at most two,
2. the total degree of each node is at most three,
3. between each pair of nodes, there are at most two edges (counted with mul-

tiplicities).

Let ω : K(V ) → {0, 1} be a weight function. (This will be the weight function of
the input of our algorithm for MaxATSP(0, 1).) Our goal is to find an admissible
multigraph H of maximum weight where the edges are weighted according to ω,
that is, each edge contributes weight mH(e) · ω(e).

Lewenstein and Sviridenko [7], by reduction to the path coloring lemma of
Kosaraju, Park, and Stein [6] (see Bläser [2] for a proof), show the following
variant of the path coloring lemma:

Lemma 1 (Path coloring lemma). If there are no 2-cycles on a cycle in an
admissible multigraph G, then G is 2-path-colorable.

Above, a 2-cycle on a cycle is a directed cycle v1, . . . , vk, v1 with k ≥ 3 such
that (vi, vi−1) (if i = 1, then i − 1 is k) is also an edge for some i.

We first compute an admissible multigraph of maximum weight. Then we
have to remove 2-cycles on a cycle. In the case of weights zero and one, we are
able to remove these 2-cycles without any loss of weight.

3 LP for Maximum Weight Admissible Multigraphs

For each edge e ∈ K(V ), there is a variable xe. If e = (u, v), we also write xuv

instead of xe. The following integral LP solves the problem of finding a maximum
weight admissible multigraph:

Maximize
∑

e∈K(V )

ω(e)xe subject to

∑

u6=v

xuv ≤ 2 for all v ∈ V (indegree)

∑

v 6=u

xuv ≤ 2 for all u ∈ V (outdegree)

∑

v 6=u

xuv +
∑

w 6=u

xwu ≤ 3 for all u ∈ V (total degree)

xuv + xvu ≤ 2 for all u, v ∈ V , u 6= v (triple edge)
xuv ∈ {0, 1, 2} for all u, v ∈ V , u 6= v (multiplicity)



Constraints (outdegree) and (indegree) assure that the outdegree and indegree
of each node are at most two. By (total degree), each node has total degree at
most three. Constraint (triple edge) forbids more than two edges (counted with
multiplicities) between each pair of nodes. The last condition ensures that each
edge has integral multiplicity. By (triple edge), each edge can have multiplicity
at most two. We now relax the integrality constraint:

0 ≤ xuv ≤ 2 for all u, v ∈ V , u 6= v (multiplicity′)

(Note that only the lower bound of (multiplicity′) is actually needed, the upper
bound also follows from (triple edge).) Let x∗

uv be an optimal solution of the
relaxed LP. Let ω∗ be its weight. We may assume that the x∗

uv are rational num-
bers. Their smallest common denominator D can be represented with poly(n)
bits. We define the multigraph H∗ as follows. For all u and v with u 6= v, there
are xuv ·D copies of the edge (u, v) in H∗. Furthermore, we define the bipartite
multigraph B∗ with bipartition V ∪ V ′ (V ′ is a copy of V ) as follows: If there
are d copies of the edge (u, v) in H∗, then there are d copies of the edge (u, v′) in
B∗. The graph B∗ will be helpful in the decomposition of H∗. By construction,
H∗ and B∗ fulfill the following properties:

(P1) The outdegree of each node v in H∗ is at most 2D. The degree of each
node v ∈ V in B∗ is at most 2D.

(P2) The indegree of each node v in H∗ is at most 2D. The degree of each node
v′ ∈ V ′ in B∗ is at most 2D.

(P3) The total degree of each node v in H∗ is at most 3D. The sum of the
degrees of v and v′ in B∗ is at most 3D.

(P4) Between each pair of distinct nodes u and v there are at most 2D edges
in H∗. For any pair of distinct nodes u and v, the sum of the number of
edges between u and v′ and between v and u′ is at most 2D.

4 A Rounding Procedure for H
�

We first assume that D = 2δ is a power of two. We will deal with the general
case later. We now decompose H∗ into two subgraphs H∗

1 and H∗
2 such that

both H∗
1 and H∗

2 fulfill the properties (P1)–(P4) of the preceding section with
D replaced by D/2. If we now replace H∗ with the heavier of H∗

1 and H∗
2 and

proceed recursively, we will end up with an optimum admissible multigraph after
log D = poly(n) such decomposition steps.

In the following, H denotes the graph of the current iteration of the pro-
cess outlined above and B is the corresponding bipartite graph. Our rounding
procedure uses the fact that the edge weights are either zero or one.

Alon [1] gives a similar procedure for edge-coloring bipartite multigraphs.
This procedure is then used by Kaplan et al. [5] for decomposing a fractional
solution of an LP for computing cycle covers.



4.1 Normalization of H

We first ensure that H fulfills also the following property (P5) in addition to
(P1)–(P4).

(P5) For all u and v: If m(u, v) + m(v, u) = 2D, then m(u, v) and m(v, u) are
both even.

Algorithm 1 takes a multigraph H that fulfills (P1)–(P4) and transforms it
into a multigraph H ′ with the same weight that fulfills (P1)–(P5).

The algorithm basically works as follows: Let u and v be two nodes. W.l.o.g.
m(u, v) ≥ m(v, u). Furthermore, assume that m(u, v) + m(v, u) = 2D and both
m(u, v) and m(v, u) are odd. (As D is even, if one of m(u, v) and m(v, u) is odd,
then both are.) Since D is a power of two, m(u, v) > D.

If ω(u, v) = 0, then we can simply remove all copies of (u, v). This does not
change the weight of H . Furthermore, this does not affect (P1)–(P4), too. If
ω(v, u) = 0, then we remove all copies of (v, u). The interesting case is ω(v, u) =
ω(u, v) = 1. Here we remove one copy of (u, v) and add one copy of (v, u). This
does not change the weight. Since m(u, v) > D, m(u, v) ≥ D thereafter. In
particular, the indegree of u and the outdegree of v are both still at most 2D.
Therefore, the resulting graph H ′ fulfills (P1)–(P4), too.

By construction, H ′ fulfills (P5). This shows the following lemma.

Lemma 2. Given a multigraph H fulfilling (P1)–(P4) for some D = 2δ, Algo-
rithm 1 computes a multigraph H ′ that has the same weight as H and fulfills
(P1)–(P5) for D.

4.2 Decomposition of H

Next we describe how to decompose a graph H fulfilling (P1)–(P5) for D into
two graphs H1 and H2 fulfilling (P1)–(P4) for D/2. Let H1 be the heavier of H1

and H2. We thereafter normalize H1 and proceed recursively.
In the first for loop of Algorithm 2, we run through all edges (u, v). If the

multiplicity of (u, v) is even in H , then we simply divide all the copies evenly
between H1 and H2. If the multiplicity is odd, then we divide all but one copy
evenly between H1 and H2. Thereafter, all edges in H have multiplicity zero or
one.

If the indegree and outdegree of a node u in H are both odd, then we add
the edge (u, u′) to B. Then we take two nodes of odd degree in a connected
component of B. (If one such node exists, then there must exist another one.)
We compute a path P connecting two such nodes and add the edges of P in
an alternating way to H1 and H2. If there are not any nodes of odd degree,
each connected component of B is Eulerian. We compute Eulerian tours and
distribute the edges in the same way as in the case of a path P .

We claim that H1 and H2 fulfill (P1)–(P4) with parameter D/2. For (P1)
note that we always remove the edges in pairs. If for instance an edge (u, v) is



Algorithm 1 Normalization of H

Input: Multigraph H fulfilling (P1)–(P4) for D = 2δ

Output: Multigraph H ′ fulfilling ω(H) = ω(H ′) and (P1)–(P5) for D
for all unordered pairs of nodes u, v ∈ V , u 6= v do

Let m be the multiplicity of (u, v) in H and m′ be the multiplicity of (v, u) in H.
W.l.o.g. m ≥ m′.
if m + m′ < 2D or m or m′ is even then

insert (u, v) and (v, u) with multiplicities m and m′ into H ′, respectively.
else

if ω(u, v) = 0 and ω(v, u) = 1 then

insert m′ copies of (v, u) into H ′.
end if

if ω(u, v) = 1 and ω(v, u) = 0 then

insert m copies of (u, v) into H ′.
end if

if ω(u, v) = ω(v, u) = 1 then

insert m − 1 copies of (u, v) insert m′ + 1 copies of (v, u) into H ′

end if

end if

end for

removed from H and added to H1, then also an edge (u, w) is remove from H
and added to H2. In other words, the outdegree of u in H1 and H2 is always
the same. The only exception is the case when the original outdegree of u is
odd. Then one more edge is added to H1, say, than to H2. However, since the
outdegree in H was odd, it was at most D− 1. Therefore, the degree in H1 is at
most D and in H2, it is at most D − 1. The same argument works if the roles
of H1 and H2 are interchanged. In the same way, we can show that H1 and H2

fulfill (P2) with D/2.

For (P3), we distinguish four cases, depending on the parity of the indegree i
and outdegree o of a node u in H . If both i and u are even, then the indegree and
outdegree of u are i/2 and o/2, respectively, in both H1 and H2 by construction.
If both i and u are odd, then the indegree and outdegree are bi/2c and do/2e,
respectively, in one of H1 and H2, and di/2e and bo/2c in the other of H1 and
H2. This is due to the fact that we added the edge (u, u′) to B. In both cases,
the indegree and outdegree sums up to (i + o)/2 ≤ 3D/2. Finally, we consider
the case where either i or o is odd. We assume that i is odd, the other case is
treated symmetrically. Then the indegree of u in H1, say, is di/2e and in H2, it
is bi/2c. In both subgraphs, the outdegree of u is o/2. The total degree of u in
H is however at most 3D − 1, since 3D is even. Therefore, i + o ≤ 3D − 1 and
di/2e+ o/2 ≤ 3D/2.

It remains to show that (P4) holds: Let m be the multiplicity of (u, v) in
H and m′ be the multiplicity of (v, u) in H . If both m and m′ are even, then
half of the copies of both (u, v) and (v, u) is added to H1 and the other half are
added to H2 in the first for loop. Thus the number of edges between u and v
is (m + m′)/2 ≤ 2D/2 in both H1 and H2. If m is odd and m′ is even or vice



Algorithm 2 Decomposition of H

Input: Multigraph H fulfilling (P1)–(P5) for some D = 2δ

Output: Multigraphs H1 and H2 fulfilling (P1)–(P4) for D/2
for all (ordered) pairs of nodes u and v, u 6= v do

Let m be the multiplicity of (u, v).
Let h = bm/2c.
Remove 2h copies of (u, v) from H.
Add h copies to H1 and h copies to H2.
Update B accordingly.

end for

for all nodes u do

if the indegree and outdegree of u in H are both odd then

add (u, u′) to B
end if

end for

while B contains nodes of odd degree do

Choose two nodes a, b ∈ V ∪ V ′ of odd degree in B that lie in the same connected
component.
Compute a path P from a to b.
Remove the edges of P from H and add them to H1 and H2 in an alternating way.
Skip all edges of the form (u, u′). Update B.

end while

for each connected component C of B do

Compute a Eulerian tour of C.
Remove the edges of C from H and add them to H1 and H2 in an alternating way,
again skipping all edges of the form (u, u′).

end for

versa, then there are b(m + m′)/2c between u and v in both H1 and H2 after
the first for loop. Then one further copy is added to either H1 and H2. But since
2D is even, b(m + m′)/2c < 2D/2 and thus b(m + m′)/2c+ 1 ≤ 2D/2. The last
case is the one where both m and m′ are odd. Then bm/2c+ bm′/2c copies are
added to H1 and H2, respectively, in the first for loop. In the remaining steps
of Algorithm 2, two further copies are added to H1 or H2. In the worst case,
they both go to one graph, say H1. Since H fulfills (P5), m + m′ < 2D. Thus
bm/2c + bm′/2c < D − 1. Therefore, bm/2c + bm′/2c + 2 ≤ D = 2D/2. Thus
H1 and H2 also fulfill (P4) for D/2. Thus we obtain the next result.

Lemma 3. Given a multigraph H that fulfills (P1)–(P5) for some D = 2δ,
Algorithm 2 computes two multigraphs H1 and H2 such that both H1 and H2

fulfill (P1)–(P4) and for each edge e, mH(e) = mH1
(e) + mH2

(e).

4.3 An Algorithm for Maximum Weight Admissible Multigraphs

Algorithm 3 repeatedly takes the multigraph H , normalizes it via Algorithm 1,
decomposes it via Algorithm 2, and proceeds iteratively with the heavier of H1

and H2. Lemmas 2 and 3 immediately prove the following result.



Algorithm 3 Maximum weight admissible subgraph

Input: Multigraph H fulfilling (P1)–(P4) for some even D = 2δ

Output: Maximum weight admissible multigraph S
for i = 1, . . . , δ do

Normalize H via Algorithm 1.
Compute multigraphs H1 and H2 from H via Algorithm 2.
Let w.lo.g. H1 be the heavier of the two computed multigraphs.
Set H = H1.

end for

Set S = H.

Lemma 4. Given a multigraph H that fulfills (P1)–(P4) for some D = 2δ and
ω(H) = ω∗, Algorithm 3 computes a maximum weight admissible multigraph S.

4.4 Making D a Power of Two

If D is not a power of two, then we use the following standard trick and replace

it by D̂ = 2δ̂ where δ̂ is the smallest natural number such that 2n2D ≤ 2δ̂. Each

value of the optimal solution x∗
uv is rounded down to the next multiple of 2−δ̂.

Let x̂uv be the values obtained. We have

x̂uv ≥ x∗
uv − 2−δ̂ (1)

Let Ĥ be the multigraph that has x̂uv · D̂ copies of each edge (u, v).
Since we round each value down, Ĥ fulfills (P1)–(P4). It remains to estimate

the loss of weight. By (1),

w(Ĥ) =
∑

(u,v)∈K(V )

ω(u, v)x̂uv2δ̂

≥ ω∗2δ̂ −
∑

(u,v)∈K(V )

ω(u, v)2−δ̂ · 2δ̂

≥ ω∗2δ̂ − n2,

because ω(u, v) ∈ {0, 1}. If we now run Algorithm 3 on the graph Ĥ for δ̂
iterations, then we end up with an admissible multigraph S of weight

ω(S) ≥ (ω∗2δ̂ − n2)/2δ̂ ≥ ω∗ − 1/(2D).

Therefore, Dω(S) ≥ Dω∗ − 1/2. Since both quantities Dω(S) and Dω∗ are
integers, we have that even Dω(S) ≥ Dω∗.

Therefore, we have a polynomial time solution for computing maximum
weight admissible multigraphs.

Theorem 1. On input Ĥ, Algorithm 3 computes a maximum weight admissible
multigraph in polynomial time.



e
f

Fig. 1. On the lefthand side: A potential 2-cycle on a cycle. On the righthand side:
The two ways how a potential 2-cycle on a cycle is treated.

5 Coloring Admissible Multigraphs

We show that for any admissible multigraph G, there is another admissible
multigraph G′ of the same weight that is even 2-path colorable. Given G, G′ can
be found in polynomial time. Our aim is to exploit the path coloring result by
Lewenstein and Sviridenko. To do so, we have to deal with 2-cycles on a cycle.

A 2-cycle c on a cycle locally looks as depicted on the lefthand side of Figure 1.
If e has weight zero, then we can simply discard e. This does not change the
weight. The resulting graph is still admissible and c is no longer a 2-cycle on a
cycle. If e has weight one, then we remove f and add another copy of e. This
can only increase the weight, since the weight of f is either zero or one. The
resulting graph is still admissible and c is no longer a 2-cycle on a cycle. (Note
that the procedure of Lewenstein and Sviridenko can deal with double edges.)

We now consider all (unordered) pairs of nodes and deal with them as de-
scribed above. This shows the following result.

Lemma 5. Given an admissible multigraph G and a weight function ω : K(V ) →
{0, 1}, there is a 2-path-colorable admissible multigraph G′ with ω(G) ≤ ω(G′).
Given G, G′ can be found in polynomial time.

6 Applications

Algorithm 4 now computes a maximum path packing or a maximum TSP tour,
respectively. We first solve the fractional LP, round the optimum solution as in
Section 4.2, make it 2-path-colorable, and finally take the color class of larger
weight as a path packing, in the case of DPP, or patch the paths of this class
together to form a TSP tour, in the case of MaxATSP(0, 1).

Theorem 2. Algorithm 4 is a polynomial time 3/4-approximation algorithm for
DPP and MaxATSP(0, 1).



Algorithm 4 DPP, MaxATSP(0, 1)

Input: Directed Graph G = (V, K(V )) with weight function ω : K(V ) → {0, 1}
Output: A path packing or TSP tour, respectively

Solve the fractional LP in Section 3.
Round the optimum fractional solution H∗ to an admissible multigraph S via Algo-
rithm 3. (Replace H∗ by Ĥ, if necessary.)
Find a 2-path colorable admissible graph S′ with the same weight as S.
Color the edges of S′ with two colors such that each color class is a collection of
node-disjoint paths.
Return the collection of larger weight. In the case of MaxATSP(0, 1), patch these path
together arbitrarily.

Proof. By construction, the output of the algorithm is a feasible solution and
it is computed in polynomial time. It remains to estimate the approximation
performance.

If G has a path packing P with ` edges, then there is an admissible multigraph
of weight 3

2`. To see this, we decompose P into two matchings M1 and M2 by
placing the edges of each path in P into M1 and M2 in an alternating fashion.
Let w.lo.g. be M1 the matching with more edges. Then P ∪M1 is an admissible
multigraph of weight 3

2`.
In the same way we see that if there is a TSP tour of weight `, there is

an admissible multigraph of weight 3
2`. (Strictly speaking, this is only true if

the number of nodes is even. We can make it even by either adding a dummy
node that is connected with weight zero edges to all other nodes. This gives a
multiplicative loss of (1−1/n) in the approximation factor. Or we can guess two
consecutive edges and contract them into one. This increases the running time
by a quadratic factor, but does not affect the approximation performance.)

The optimum admissible multigraph is divided into two color classes. There-
fore, the heavier of the two classes has weight at least 3

4 `. ut

Corollary 1. There is a 5/4-approximation algorithm with polynomial running
time for ATSP(1, 2).

Proof. Vishwanathan [9] showed that any (1 − α)-approximation algorithm for
MaxATSP(0, 1) yields an (1 + α)-approximation for ATSP(1, 2), too. ut

References

1. N. Alon. A simple algorithm for edge-coloring bipartite multigraphs. Inform.
Processing Letters 85:301–302, 2003.

2. M. Bläser. An 8/13-approximation algorithm for the maximum asymmetric TSP.
J. Algorithms, 50(1): 23–48, 2004.

3. M. Bläser and B. Siebert. Computing cycle covers without short cycles. In Proc.
9th Ann. European Symp. on Algorithms (ESA), Lecture Notes in Comput. Sci.
2161, 369–379, Springer, 2001.



4. M. Bläser and B. Manthey. Approximating maximum weight cycle covers in di-
rected graphs with edge weights zero and one. Manuscript, 2003.

5. H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approximation algo-
rithms for asymmetric TSP by decomposing directed regular multigraphs. In Proc.
44th Ann. IEEE Symp. on Foundations of Comput. Sci. (FOCS), pages 56–65,
2003.

6. S. R. Kosaraju, J. K. Park, and C. Stein. Long tours and short superstrings.
In Proc. 35th Ann. IEEE Symp. on Foundations of Comput. Sci. (FOCS), pages
166-177, 1994.

7. M. Lewenstein and M. Sviridenko. A 5/8 approximation algorithm for the maxi-
mum asymmetric TSP. SIAM J. Discrete Math., 17:237–248, 2003.

8. C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with
distances one and two. Math. Oper. Res., 18:1–11, 1993.

9. S. Vishwanathan. An approximation algorithm for the asymmetric travelling sales-
man problem with distances one and two. Inform. Proc. Letters, 44:297–302, 1992.


