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Why univariate polynomials?

e Open problem 1.4 in survey by Chen, Kayal and Wigderson:
Find explicit family (f,) of univariate polynomials of degree n
and lower bound on circuit size > (log n)°(%).

e Our model: representations of the form
S
F(x) = 0. Qi(x)*,
i=1

where deg(Q;) < t. Wanted: lower bound on s.

e This toy model is easier to analyze but still challenging,
even for t =2or () t=1.
A variation is closely connected to VP # VNP.



The Model

Bounding sparsity( Q;) instead of degree(Q;)

Consider the model:
S
Fx) =D ai.Qi(x)*,
i=1

where Q; has at most t monomials. Candidate hard polynomials:
2’1
. H(X + /). Probably hard for general arithmetic circuits.
i=1



The Model

Bounding sparsity( Q;) instead of degree(Q;)

Consider the model:
S
Fx) =D ai.Qi(x)*,
i=1

where Q; has at most t monomials. Candidate hard polynomials:
2’1
. H(X + /). Probably hard for general arithmetic circuits.
i=1
271
o Z 22i("=i=1) X7 Satisfies Kurz condition.
i=0



The Model ower bounds: methods and results The Wronskian

Bounding sparsity( Q;) instead of degree(Q;)

Consider the model:
S
Fx) =D ai.Qi(x)*,
i=1

where Q; has at most t monomials. Candidate hard polynomials:
2’1
. H(X + /). Probably hard for general arithmetic circuits.
i=1
271
o Z 22i("=i=1) X7 Satisfies Kurz condition.
i=0

o (X +1)?". Seems hard if e; required to be small.



The Model ower bounds: methods and results The Wronskian Shifted derivatives

Bounding sparsity( Q;) instead of degree(Q;)

Consider the model:
S
Fx) =D ai.Qi(x)*,
i=1

where Q; has at most t monomials. Candidate hard polynomials:
2’1
. H(X + /). Probably hard for general arithmetic circuits.
i=1
271
o Z 22i("=i=1) X7 Satisfies Kurz condition.
i=0

o (X +1)?". Seems hard if e; required to be small.

If VP = VNP, they can be represented with t = n®(Vn),
s = n%WV" and e; = O(v/n).



The Model ower bounds: methods and results The Wronskian Shifted derivatives

Bounding sparsity( Q;) instead of degree(Q;)

Consider the model:
S
Fx) =D ai.Qi(x)*,
i=1

where Q; has at most t monomials. Candidate hard polynomials:
2’1
. H(X + /). Probably hard for general arithmetic circuits.
i=1
271
o Z 22i("=i=1) X7 Satisfies Kurz condition.
i=0

o (X +1)?". Seems hard if e; required to be small.

If VP = VNP, they can be represented with t = n®(Vn),
s = n%WV" and e; = O(v/n).

e In 2 variables: 2,2;1 Xiy? (Newton polygon).
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The Model ower bounds: methods and results

Back to bounded degree

Recall:

Fx) =D ai.Qi(x)*,
i=1

where deg(Q;) < t.

o Expected lower bound: s = Q(d/t).
Applies to “random” f by counting independent parameters.

e What we can prove:
s = Q(y/d/t) for some explicit polynomials f.
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Upper bounds for bounded degree

Recall: .
F(x) =Y aiQi(x)%,
i=1

where deg(Q;) < t.

o s = 0((d/t)?) for any f (simple explicit construction).

e s = 0(d/t) for most f
[On the Waring problem for polynomial rings.
Froberg, Ottaviani, Shapiro, 2012]
for t = 1: [Polynomial interpolation in several variables.
Alexander - Hirschowitz, 1995]

e Worst case rank < 2x(worst case border rank):
[Blekherman - Teitler, 2014]
simons.berkeley.edu /talks/grigoriy-blekherman-2014-11-10
Hence s = O(d/t) for any f (non-constructive).
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The method of partial derivatives

To prove that f is hard to compute,
we seek a “complexity measure” I such that:

e [(f) is high.
e ['(g) is low if g has small circuit complexity.
One popular measure for multivariate polynomials:
e Of = space spanned by all partial derivatives 9“f /Ox“.
o ['(f) =dim(0f).
Abject failure for univariate polynomials!
Indeed, ['(f) = d + 1 for all f of degree d.



Lower bounds: methods and results

The method of shifted derivatives

e To fix this: consider the shifted derivatives x'f()(x).
o Degree is deg(f) + i — j = we can expect linear dependencies.

e This is just the "method of shifted partial derivatives”
applied to univariate polynomials.
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The Wronskian

The Wronskian W (f1, ..., f,) is defined by

i) A 00
W (fi,. o ) (x) = i) B0) ")

nl—l n:—l ; n:—l
AR A A G
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The Wronskian

The Wronskian W (f1, ..., f,) is defined by
a(x)  h(x) ... f(x)
ilx) KB(x) ... fi(x)
Wi, ) () =1 . : - ;
f]_(n_l) f-2(n—1) o f-n(n—l)

Proposition
For fi,...,f, € K(X), the functions are linearly dependent if and
only if the Wronskian W (f1, ..., f,) vanishes everywhere.

We also use the Wronskian to bound multiplicities of roots.
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o Hard polynomial: T[7%,(x — ay)9/?t.
Lower bound: s = Q(y/d/t). Method: Wronskian.
e Hard polynomial: f(x) =37 (x — a;)9.

deg Qi | e m s Method Optimality
1 =d % Q(d) Wronskian Yes
2 @ Q (\/H) Wronskian Yes
t % % Q (1 ﬁ) Wronskian

9/ 22



Lower bounds: methods and results

The Wronskian

Shifted derivatives

Our results

e Hard polynomial: Hk 1(

ak)

Lower bound: s = Q(\/d/ Method Wronskian.

e Hard polynomial: f(x) = Zm 1(x —a;)9.
deg Qi | e m s Method Optimality
1 =d % Q(d) Wronskian Yes
2 @ Q (\/H) Wronskian Yes
t % % Q (1\/€) Wronskian
t < % @ % Q <\/§> Wronskian Yes
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Our results

o Hard polynomial: J]7%,(x ak)
Lower bound: s = Q(\/d/ Method Wronskian.

e Hard polynomial: f(x) = Zml(x a;)?.

deg Qi | e m s Method Optimality
1 =d % Q(d) Wronskian Yes
2 @ Q (\/H) Wronskian Yes
t % % Q (1\/€) Wronskian
t < % @ % Q <\/§> Wronskian Yes
t \/g Q <\/€> Shifted derivatives Yes
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Linear independence of powers of linear forms

For any distinct a;'s in K, the family
S={(x—a1)? ...,(x —ag41)} is a basis of Kq[X].

Proof.
(x—a1)? ... (x — agy1)?
Wr(x) = d(x —ay)91 - d(x — a-d+1)d_1
d! . d!

For any z € C, define b; = z — a; and we have:

B bl . bd

Wi d- 1.3‘1”—1 d- z.;g’;} . bf._l bg;}

d .. d 11

Vandermonde matrix: [.| = [T, ;(bi — b;) =[], ;(aj — ai) # 0.

= Wr #£ 0 = S is linearly independent.



The Wronskian Shifted deri

Lower bound for t =1

For any d, the polynomial f(x) = 3", (x — a;)9, with distinct a;'s
and m = | 4|, is optimally hard in the following sense:

any representation of f of the form f = > ;_, a;t9,

with each (; of degree 1, must satisfy s > |4 |.
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The Wronskian

Lower bound for t =1

For any d, the polynomial f(x) = 3", (x — a;)9, with distinct a;'s
and m = | 4|, is optimally hard in the following sense:
any representation of f of the form f = > ;_, a;t9,

with each (; of degree 1, must satisfy s > |4 |.

For contradiction, assume that f(X) = Y%, a9 with s < m.
We obtain the nontrivial linear relation

m S

Z(x —a;)? — Za;ﬁ}j =0
1 i=1

i=

between m + s < d d-th powers: contradiction.

Stronger bound by Johannes Kepple (Candidatus Scientiarum).
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Bounding multiplicities with the Wronskian

Let N, (F) denote the multiplicity of zy as a root of F.

Lemma (Voorhoeve and Van Der Poorten, 1975)

Let Q1,...,Qm be linearly independent polynomials,
and F(z) =Y., Qi(z). Then for any z; € K:

NZO(F)Sm_1+Nzo(W(Ql7-"7Qm))
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The Wronskian

Bounding multiplicities with the Wronskian
Let N, (F) denote the multiplicity of zp as a root of F.

Lemma (Voorhoeve and Van Der Poorten, 1975)

Let Q1,...,Qm be linearly independent polynomials,
and F(z) =Y., Qi(z). Then for any z; € K:

NZO(F)Sm_1+Nzo(W(Qla--'7Qm))

| A

Proof.

Note that W(Ql, ce Qm) = W(Ql, ey Qm_1, F)
Expand along last column:

m—1
W(Qi ..., Qm1,F) =Y BF?
i=0

and N (FD) > N, (F) — (m—1).
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Lower bound for t = 2

Theorem

For any t, d, the polynomial f(x) = > ,(x — a;)¢,

with distinct a;'s and m = L\/TEJ is hard in the following sense:

S
any representation of f of the form f =Y «;Q7,
i=1
with each Q; of degree < 2, must satisfy:

s=q(vd)
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Sketch of the proof

o Remember f(x) = >_7" (x — a;)¢ where m = {@J
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e Use Voorhoeve - Van Der Poorten lemma to bound multiplicity of a:
d=N, ((x—a)%) </—1+N, (W(R,....R])

e Factor out Rf"f(lfl) from each column of the Wronskian.

e Remaining determinant: degree bounded by 3/(/ —1)/2.
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Sketch of the proof

o Remember f(x) = >_7" (x — a;)¢ where m = {@J
e For contradiction, assume f = Y7 | ; Q" with s < m/2.
e Pick an a; which isn't a root of any Q;, wlog a;.

o Rewrite (x — a;)? = Zﬁzl ;iR (x)
with linearly independent R; of degree <2 and / <s+m—1<3m/2.

e Use Voorhoeve - Van Der Poorten lemma to bound multiplicity of a:
d=N, ((x—a)%) </—1+N, (W(R,....R])
e Factor out Rf"f(lfl) from each column of the Wronskian.

e Remaining determinant: degree bounded by 3/(/ —1)/2.

e Combine to obtain :
d<Il—-1+3I(l-1)/2<27m?/8 < 27d/32.
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A closer look

Take for example | = 2:

W (R, R5?) = il R = Rrotreia
V720 e RETIR) eRPTIRY Y 2
R R
where A = &R &R,

o Noy (RETY) =N,y (RET) =0,
e The entries of A have low degree (here, at most 2);
we bound N, (A) by the degree of A.
o

e Possible room for improvement: better bound on N, (A)?
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Shifted derivatives

Shifted derivatives

Definition

Let f(x) € K[x] be a polynomial.
The span of the I-shifted k-th order derivatives of f is defined as:

<XSi+/ X f(i)> d:ef ]K-span {Xj . f(i)(X) 0 <k, J<i+ /}

i<k

This forms a K-vector space and we denote its dimension by:

dim <XS"+’ : f<")>

i<k

This complexity measure is subadditive.
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Shifted derivatives

An upper bound for sums of powers

Proposition

For any polynomial f of degree d of the form f =37 | o Q"
with deg Q; < t we have:

im (xSt ) .
d|m<x f >i§k§s (I+ kt +1).
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im (xSt ) .
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with deg Q < t, we have dim (x=/+/. F(0) <[4 kt+1.




Shifted derivatives

An upper bound for sums of powers

Proposition

For any polynomial f of degree d of the form f =37 | o Q"
with deg Q; < t we have:

im (xSt ) .
d|m<x f >i§k§s (I+ kt +1).

e By subadditivity, it's enough to show that for f = Q€
with deg Q < t, we have dim (x=/+/. F(0) <[4 kt+1.

* Any g € (x=*. f(i)>i<k is of the form g = Q%% . R.
Since degg < e; -t + [ we have deg R < [ + kt.
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Shifted Differential Equations

Definition (SDE)

k
This is an equation: Z Pi(x)fD(x) =0

for some polynomials P,- € K[X] with deg P; < i+ 1.
k is called the order and [ is called the shift.
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Shifted Differential Equations

Definition (SDE)

k
This is an equation: Z Pi(x)fD(x) =0

for some polynomials P,- € K[X] with deg P; < i+ 1.
k is called the order and [ is called the shift

Proposition

| A

If f € K[X] doesn't satisfy any SDE of order k and shift |
then <x§i+’ . f(i)>i<k is of full dimension , i.e.,

k
dim <XS"+' : f(">> =S +i+1) = (k+ 1)1+ k(k +1)/2.

i<k




Shifted derivatives

The key lemma

Lemma

Let f(x) = i(x — a;)¢ where the a;’s are distinct and m < d.
If f satisfies a SDE of order k and shift | then:

i) k>m, or

i) />4< —3m/2
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It is nontrivial if Kk < m.
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Shifted derivatives

The key lemma

Lemma
m

Let f(x) = Y. (x — a;)9 where the a;'s are distinct and m < d.

i=1
If f satisfies a SDE of order k and shift | then:
i) k>m, or
i) />4< —3m/2

e Transform the SDE into a relation of the form:
—Qu(x)(x —a1) K = > Qi(x)(x — a;)**
i=2

It is nontrivial if Kk < m.

¢ Use the Wronskian (again!) to obtain:
d—k<m—2+(m-1)(/+k)+ ("7}

19 /22
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The lower bound
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The lower bound

For any d,t > 2 such that t < ¢, the polynomial f(x) = > (x — a;)®
with distinct a;'s and m = {\/;J is hard:
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e Pick k=m—1and | =(d/m)—3m/2: (x=*". f(i)>i<k is full.

e Hence dim (x=/*/. f0) = (k+ 1)/ + k(k +1)/2 = Q(d).

e Upper bound for sums of powers:
dim (x= fD) <5 (14 kt +1).




Shifted derivatives

The lower bound

For any d,t > 2 such that t < ¢, the polynomial f(x) = > (x — a;)®
with distinct a;'s and m = {\/;J is hard:

i

Iff =37 1 a;QF with each Q; of degree < t then s = Q <f )

e Pick k=m—1and | =(d/m)—3m/2: (x=*". f(i)>i<k is full.

e Hence dim (x=/*/. f0) = (k+ 1)/ + k(k +1)/2 = Q(d).

e Upper bound for sums of powers:
dim (x= fD) <5 (14 kt +1).

e This gives s = Q (Hk%ﬂ)

y
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Shifted derivatives

Limitations of Shifted Derivatives

e Recall we wish to find f hard to write as:
f(x) = Za;.Q;(X)e"
i=1

e For any f of degree d,
shifted derivatives cannot give a better bound than:

ol
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Limitations of Shifted Derivatives

Recall we wish to find f hard to write as:

Fx) = 0iQi(x)
i=1

For any f of degree d,
shifted derivatives cannot give a better bound than:

]

Can the Wronskian do better?

When are the (x — a;)¢ linearly independent?
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A natural first step?

We are looking for an f which does not belong to any subspace
of the form:

Span(Qs, ..., Q).

First step: find s-dimensional subspace of K4[X] which is not
of the form

Span(Q:, ..., Q).



