Lower bounds for sums of powers of low degree univariate polynomials

Pascal Koiran
Joint work with:
Neeraj Kayal, Timothée Pecatte and Chandan Saha

WACT 2015, Saarbrücken

Why univariate polynomials?

- Open problem 1.4 in survey by Chen, Kayal and Wigderson: Find explicit family $\left(f_{n}\right)$ of univariate polynomials of degree n and lower bound on circuit size $>(\log n)^{O(1)}$.

Why univariate polynomials?

- Open problem 1.4 in survey by Chen, Kayal and Wigderson: Find explicit family $\left(f_{n}\right)$ of univariate polynomials of degree n and lower bound on circuit size $>(\log n)^{O(1)}$.
- Our model: representations of the form

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}}
$$

where $\operatorname{deg}\left(Q_{i}\right) \leq t$. Wanted: lower bound on s.

Why univariate polynomials?

- Open problem 1.4 in survey by Chen, Kayal and Wigderson: Find explicit family $\left(f_{n}\right)$ of univariate polynomials of degree n and lower bound on circuit size $>(\log n)^{O(1)}$.
- Our model: representations of the form

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}}
$$

where $\operatorname{deg}\left(Q_{i}\right) \leq t$. Wanted: lower bound on s.

- This toy model is easier to analyze but still challenging, even for $t=2$ or (!) $t=1$.

Why univariate polynomials?

- Open problem 1.4 in survey by Chen, Kayal and Wigderson: Find explicit family $\left(f_{n}\right)$ of univariate polynomials of degree n and lower bound on circuit size $>(\log n)^{O(1)}$.
- Our model: representations of the form

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}}
$$

where $\operatorname{deg}\left(Q_{i}\right) \leq t$. Wanted: lower bound on s.

- This toy model is easier to analyze but still challenging, even for $t=2$ or (!) $t=1$.
- A variation is closely connected to VP $\neq \mathrm{VNP}$.

Bounding sparsity $\left(Q_{i}\right)$ instead of degree $\left(Q_{i}\right)$

Consider the model:

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}}
$$

where Q_{i} has at most t monomials. Candidate hard polynomials:

- $\prod_{i=1}^{2^{n}}(X+i)$. Probably hard for general arithmetic circuits.

Bounding sparsity $\left(Q_{i}\right)$ instead of degree $\left(Q_{i}\right)$

Consider the model:

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}}
$$

where Q_{i} has at most t monomials. Candidate hard polynomials:

- $\prod_{i=1}^{2^{n}}(X+i)$. Probably hard for general arithmetic circuits.
- $\sum_{i=0}^{2^{n}-1} 2^{2 i\left(2^{n}-i-1\right)} X^{i}$. Satisfies Kurz condition.

Bounding sparsity $\left(Q_{i}\right)$ instead of degree $\left(Q_{i}\right)$

Consider the model:

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}}
$$

where Q_{i} has at most t monomials. Candidate hard polynomials:

- $\prod_{i=1}^{2^{n}}(X+i)$. Probably hard for general arithmetic circuits.
- $\sum_{i=0}^{2^{n}-1} 2^{2 i\left(2^{n}-i-1\right)} X^{i}$. Satisfies Kurz condition.
- $(X+1)^{2^{n}}$. Seems hard if e_{i} required to be small.

Bounding sparsity $\left(Q_{i}\right)$ instead of degree $\left(Q_{i}\right)$

Consider the model:

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}}
$$

where Q_{i} has at most t monomials. Candidate hard polynomials:

- $\prod_{i=1}^{2^{n}}(X+i)$. Probably hard for general arithmetic circuits.
- $\sum_{i=0}^{2^{n}-1} 2^{2 i\left(2^{n}-i-1\right)} X^{i}$. Satisfies Kurz condition.
- $(X+1)^{2^{n}}$. Seems hard if e_{i} required to be small.

If VP $=\mathrm{VNP}$, they can be represented with $t=n^{O(\sqrt{n})}$, $s=n^{O(\sqrt{n})}$ and $e_{i}=O(\sqrt{n})$.

Bounding sparsity $\left(Q_{i}\right)$ instead of degree $\left(Q_{i}\right)$

Consider the model:

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}}
$$

where Q_{i} has at most t monomials. Candidate hard polynomials:

- $\prod_{i=1}^{2^{n}}(X+i)$. Probably hard for general arithmetic circuits.
- $\sum_{i=0}^{2^{n}-1} 2^{2 i\left(2^{n}-i-1\right)} X^{i}$. Satisfies Kurz condition.
- $(X+1)^{2^{n}}$. Seems hard if e_{i} required to be small.

If VP $=\mathrm{VNP}$, they can be represented with $t=n^{O(\sqrt{n})}$, $s=n^{O(\sqrt{n})}$ and $e_{i}=O(\sqrt{n})$.

- In 2 variables: $\sum_{i=1}^{2^{n}} X^{i} Y^{i^{2}}$ (Newton polygon).

Back to bounded degree

Recall:

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}},
$$

where $\operatorname{deg}\left(Q_{i}\right) \leq t$.

- Expected lower bound: $s=\Omega(d / t)$. Applies to "random" f by counting independent parameters.

Back to bounded degree

Recall:

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}},
$$

where $\operatorname{deg}\left(Q_{i}\right) \leq t$.

- Expected lower bound: $s=\Omega(d / t)$.

Applies to "random" f by counting independent parameters.

- What we can prove:
$s=\Omega(\sqrt{d / t})$ for some explicit polynomials f.

Upper bounds for bounded degree

Recall:

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}},
$$

where $\operatorname{deg}\left(Q_{i}\right) \leq t$.

- $s=O\left((d / t)^{2}\right)$ for any f (simple explicit construction).

Upper bounds for bounded degree

Recall:

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}}
$$

where $\operatorname{deg}\left(Q_{i}\right) \leq t$.

- $s=O\left((d / t)^{2}\right)$ for any f (simple explicit construction).
- $s=O(d / t)$ for most f
[On the Waring problem for polynomial rings.
Fröberg, Ottaviani, Shapiro, 2012]
for $t=1$: [Polynomial interpolation in several variables.
Alexander - Hirschowitz, 1995]

Upper bounds for bounded degree

Recall:

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}}
$$

where $\operatorname{deg}\left(Q_{i}\right) \leq t$.

- $s=O\left((d / t)^{2}\right)$ for any f (simple explicit construction).
- $s=O(d / t)$ for most f
[On the Waring problem for polynomial rings.
Fröberg, Ottaviani, Shapiro, 2012]
for $t=1$: [Polynomial interpolation in several variables.
Alexander - Hirschowitz, 1995]
- Worst case rank $\leq 2 \times$ (worst case border rank):
[Blekherman - Teitler, 2014]
simons.berkeley.edu/talks/grigoriy-blekherman-2014-11-10
Hence $s=O(d / t)$ for any f (non-constructive).

The method of partial derivatives

To prove that f is hard to compute, we seek a "complexity measure" 「 such that:

- $\Gamma(f)$ is high.
- $\Gamma(g)$ is low if g has small circuit complexity.

The method of partial derivatives

To prove that f is hard to compute, we seek a "complexity measure" 「 such that:

- $\Gamma(f)$ is high.
- $\Gamma(g)$ is low if g has small circuit complexity.

One popular measure for multivariate polynomials:

- $\partial f=$ space spanned by all partial derivatives $\partial^{\alpha} f / \partial x^{\alpha}$.
- $\Gamma(f)=\operatorname{dim}(\partial f)$.

The method of partial derivatives

To prove that f is hard to compute, we seek a "complexity measure" 「 such that:

- $\Gamma(f)$ is high.
- $\Gamma(g)$ is low if g has small circuit complexity.

One popular measure for multivariate polynomials:

- $\partial f=$ space spanned by all partial derivatives $\partial^{\alpha} f / \partial x^{\alpha}$.
- $\Gamma(f)=\operatorname{dim}(\partial f)$.

Abject failure for univariate polynomials!
Indeed, $\Gamma(f)=d+1$ for all f of degree d.

The method of shifted derivatives

- To fix this: consider the shifted derivatives $x^{i} f^{(j)}(x)$.
- Degree is $\operatorname{deg}(f)+i-j \Rightarrow$ we can expect linear dependencies.
- This is just the "method of shifted partial derivatives" applied to univariate polynomials.

The Wronskian

Definition

The Wronskian $\mathrm{W}\left(f_{1}, \ldots, f_{n}\right)$ is defined by

$$
W\left(f_{1}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \ldots & f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \ldots & f_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right|
$$

The Wronskian

Definition

The Wronskian $\mathrm{W}\left(f_{1}, \ldots, f_{n}\right)$ is defined by

$$
W\left(f_{1}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \ldots & f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \ldots & f_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right|
$$

Proposition

For $f_{1}, \ldots, f_{n} \in \mathbb{K}(X)$, the functions are linearly dependent if and only if the Wronskian $\mathrm{W}\left(f_{1}, \ldots, f_{n}\right)$ vanishes everywhere.

We also use the Wronskian to bound multiplicities of roots.

Our results

- Hard polynomial: $\prod_{k=1}^{2 t}\left(x-a_{k}\right)^{d / 2 t}$. Lower bound: $s=\Omega(\sqrt{d / t})$. Method: Wronskian.

Our results

- Hard polynomial: $\prod_{k=1}^{2 t}\left(x-a_{k}\right)^{d / 2 t}$. Lower bound: $s=\Omega(\sqrt{d / t})$. Method: Wronskian.
- Hard polynomial: $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$.

Our results

- Hard polynomial: $\prod_{k=1}^{2 t}\left(x-a_{k}\right)^{d / 2 t}$. Lower bound: $s=\Omega(\sqrt{d / t})$. Method: Wronskian.
- Hard polynomial: $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$.

$\operatorname{deg} Q_{i}$	e_{i}	m	s	Method	Optimality

Our results

- Hard polynomial: $\prod_{k=1}^{2 t}\left(x-a_{k}\right)^{d / 2 t}$. Lower bound: $s=\Omega(\sqrt{d / t})$. Method: Wronskian.
- Hard polynomial: $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$.

$\operatorname{deg} Q_{i}$	e_{i}	m	s	Method	Optimality
1	$=d$	$\frac{d}{2}$	$\Omega(d)$	Wronskian	Yes

Our results

- Hard polynomial: $\prod_{k=1}^{2 t}\left(x-a_{k}\right)^{d / 2 t}$. Lower bound: $s=\Omega(\sqrt{d / t})$. Method: Wronskian.
- Hard polynomial: $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$.

$\operatorname{deg} Q_{i}$	e_{i}	m	s	Method	Optimality
1	$=d$	$\frac{d}{2}$	$\Omega(d)$	Wronskian	Yes
2		$\frac{\sqrt{d}}{2}$	$\Omega(\sqrt{d})$	Wronskian	Yes

Our results

- Hard polynomial: $\prod_{k=1}^{2 t}\left(x-a_{k}\right)^{d / 2 t}$. Lower bound: $s=\Omega(\sqrt{d / t})$. Method: Wronskian.
- Hard polynomial: $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$.

$\operatorname{deg} Q_{i}$	e_{i}	m	s	Method	Optimality
1	$=d$	$\frac{d}{2}$	$\Omega(d)$	Wronskian	Yes
2		$\frac{\sqrt{d}}{2}$	$\Omega(\sqrt{d})$	Wronskian	Yes
t		$\frac{2}{3} \sqrt{\frac{d}{t}}$	$\Omega\left(\frac{1}{t} \sqrt{\frac{d}{t}}\right)$	Wronskian	

Our results

- Hard polynomial: $\prod_{k=1}^{2 t}\left(x-a_{k}\right)^{d / 2 t}$. Lower bound: $s=\Omega(\sqrt{d / t})$. Method: Wronskian.
- Hard polynomial: $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$.

$\operatorname{deg} Q_{i}$	e_{i}	m	s	Method	Optimality
1	$=d$	$\frac{d}{2}$	$\Omega(d)$	Wronskian	Yes
2		$\frac{\sqrt{d}}{2}$	$\Omega(\sqrt{d})$	Wronskian	Yes
t		$\frac{2}{3} \sqrt{\frac{d}{t}}$	$\Omega\left(\frac{1}{t} \sqrt{\frac{d}{t}}\right)$	Wronskian	
t	$\leq \frac{d}{t}$	$\frac{\sqrt{2}}{3} \sqrt{\frac{d}{t}}$	$\Omega\left(\sqrt{\frac{d}{t}}\right)$	Wronskian	Yes

Our results

- Hard polynomial: $\prod_{k=1}^{2 t}\left(x-a_{k}\right)^{d / 2 t}$. Lower bound: $s=\Omega(\sqrt{d / t})$. Method: Wronskian.
- Hard polynomial: $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$.

$\operatorname{deg} Q_{i}$	e_{i}	m	s	Method	Optimality
1	$=d$	$\frac{d}{2}$	$\Omega(d)$	Wronskian	Yes
2		$\frac{\sqrt{d}}{2}$	$\Omega(\sqrt{d})$	Wronskian	Yes
t		$\frac{2}{3} \sqrt{\frac{d}{t}}$	$\Omega\left(\frac{1}{t} \sqrt{\frac{d}{t}}\right)$	Wronskian	
t	$\leq \frac{d}{t}$	$\frac{\sqrt{2}}{3} \sqrt{\frac{d}{t}}$	$\Omega\left(\sqrt{\frac{d}{t}}\right)$	Wronskian	Yes
t		$\sqrt{\frac{d}{t}}$	$\Omega\left(\sqrt{\frac{d}{t}}\right)$	Shifted derivatives	Yes

Linear independence of powers of linear forms

For any distinct a_{i} 's in \mathbb{K}, the family
$S=\left\{\left(x-a_{1}\right)^{d}, \ldots,\left(x-a_{d+1}\right)^{d}\right\}$ is a basis of $\mathbb{K}_{d}[X]$.
Proof.

$$
\operatorname{Wr}(x)=\left|\begin{array}{ccc}
\left(x-a_{1}\right)^{d} & \cdots & \left(x-a_{d+1}\right)^{d} \\
d\left(x-a_{1}\right)^{d-1} & \cdots & d\left(x-a_{d+1}\right)^{d-1} \\
\vdots & \ddots & \vdots \\
d! & \cdots & d!
\end{array}\right|
$$

For any $z \in \mathbb{C}$, define $b_{i}=z-a_{i}$ and we have:

$$
\operatorname{W} r(z)=\left|\begin{array}{ccc}
b_{1}^{d} & \ldots & b_{d+1}^{d} \\
d \cdot b_{1}^{d-1} & \ldots & d \cdot b_{d+1}^{d-1} \\
\vdots & \ddots & \vdots \\
d! & \ldots & d!
\end{array}\right|=c \cdot\left|\begin{array}{ccc}
b_{1}^{d} & \ldots & b_{d+1}^{d} \\
b_{1}^{d-1} & \ldots & b_{d+1}^{d-1} \\
\vdots & \ddots & \vdots \\
1 & \ldots & 1
\end{array}\right|
$$

Vandermonde matrix: $||=.\prod_{i \neq j}\left(b_{i}-b_{j}\right)=\prod_{i \neq j}\left(a_{j}-a_{i}\right) \neq 0$.
$\Rightarrow \mathrm{Wr} \not \equiv 0 \Rightarrow S$ is linearly independent.

Lower bound for $t=1$

Theorem

For any d, the polynomial $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$, with distinct a_{i} 's and $m=\left\lfloor\frac{d}{2}\right\rfloor$, is optimally hard in the following sense: any representation of f of the form $f=\sum_{i=1}^{s} \alpha_{i} \ell_{i}^{d}$, with each ℓ_{i} of degree 1 , must satisfy $s \geq\left\lfloor\frac{d}{2}\right\rfloor$.

Lower bound for $t=1$

Theorem

For any d, the polynomial $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$, with distinct a_{i} 's and $m=\left\lfloor\frac{d}{2}\right\rfloor$, is optimally hard in the following sense: any representation of f of the form $f=\sum_{i=1}^{s} \alpha_{i} \ell_{i}^{d}$, with each ℓ_{i} of degree 1 , must satisfy $s \geq\left\lfloor\frac{d}{2}\right\rfloor$.

Proof.

For contradiction, assume that $f(X)=\sum_{i=1}^{s} \alpha_{i} \ell_{i}^{d}$ with $s<m$. We obtain the nontrivial linear relation

$$
\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}-\sum_{i=1}^{s} \alpha_{i} \ell_{i}^{d}=0
$$

between $m+s<d d$-th powers: contradiction.

Lower bound for $t=1$

Theorem

For any d, the polynomial $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$, with distinct a_{i} 's and $m=\left\lfloor\frac{d}{2}\right\rfloor$, is optimally hard in the following sense: any representation of f of the form $f=\sum_{i=1}^{s} \alpha_{i} \ell_{i}^{d}$, with each ℓ_{i} of degree 1 , must satisfy $s \geq\left\lfloor\frac{d}{2}\right\rfloor$.

Proof.

For contradiction, assume that $f(X)=\sum_{i=1}^{s} \alpha_{i} \ell_{i}^{d}$ with $s<m$. We obtain the nontrivial linear relation

$$
\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}-\sum_{i=1}^{s} \alpha_{i} \ell_{i}^{d}=0
$$

between $m+s<d d$-th powers: contradiction.
Stronger bound by Johannes Kepple (Candidatus Scientiarum).

Bounding multiplicities with the Wronskian

Let $N_{z_{0}}(F)$ denote the multiplicity of z_{0} as a root of F.

Lemma (Voorhoeve and Van Der Poorten, 1975)

Let Q_{1}, \ldots, Q_{m} be linearly independent polynomials, and $F(z)=\sum_{i=1}^{m} Q_{i}(z)$. Then for any $z_{0} \in K$:

$$
\mathrm{N}_{z_{0}}(F) \leq m-1+\mathrm{N}_{z_{0}}\left(\mathrm{~W}\left(Q_{1}, \ldots, Q_{m}\right)\right)
$$

Bounding multiplicities with the Wronskian

Let $N_{z_{0}}(F)$ denote the multiplicity of z_{0} as a root of F.

Lemma (Voorhoeve and Van Der Poorten, 1975)

Let Q_{1}, \ldots, Q_{m} be linearly independent polynomials, and $F(z)=\sum_{i=1}^{m} Q_{i}(z)$. Then for any $z_{0} \in K$:

$$
\mathrm{N}_{z_{0}}(F) \leq m-1+\mathrm{N}_{z_{0}}\left(\mathrm{~W}\left(Q_{1}, \ldots, Q_{m}\right)\right)
$$

Proof.

Note that $\mathrm{W}\left(Q_{1}, \ldots, Q_{m}\right)=\mathrm{W}\left(Q_{1}, \ldots, Q_{m-1}, F\right)$.
Expand along last column:

$$
\mathrm{W}\left(Q_{1}, \ldots, Q_{m-1}, F\right)=\sum_{i=0}^{m-1} B_{i} F^{(i)}
$$

and $N_{z_{0}}\left(F^{(i)}\right) \geq N_{z_{0}}(F)-(m-1)$.

Lower bound for $t=2$

Theorem

For any t, d, the polynomial $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$, with distinct a_{i} 's and $m=\left\lfloor\frac{\sqrt{d}}{2}\right\rfloor$, is hard in the following sense: any representation of f of the form $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$, with each Q_{i} of degree ≤ 2, must satisfy:

$$
s=\Omega(\sqrt{d})
$$

Sketch of the proof

- Remember $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ where $m=\left\lfloor\frac{\sqrt{d}}{2}\right\rfloor$,

Sketch of the proof

- Remember $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ where $m=\left\lfloor\frac{\sqrt{d}}{2}\right\rfloor$,
- For contradiction, assume $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with $s<m / 2$.

Sketch of the proof

- Remember $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ where $m=\left\lfloor\frac{\sqrt{d}}{2}\right\rfloor$,
- For contradiction, assume $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with $s<m / 2$.
- Pick an a_{i} which isn't a root of any Q_{j}, wlog a_{1}.

Sketch of the proof

- Remember $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ where $m=\left\lfloor\frac{\sqrt{d}}{2}\right\rfloor$,
- For contradiction, assume $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with $s<m / 2$.
- Pick an a_{i} which isn't a root of any Q_{j}, wlog a_{1}.
- Rewrite $\left(x-a_{1}\right)^{d}=\sum_{i=1}^{l} \alpha_{i} R_{i}^{e_{i}}(x)$ with linearly independent R_{i} of degree ≤ 2 and $I \leq s+m-1<3 m / 2$.

Sketch of the proof

- Remember $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ where $m=\left\lfloor\frac{\sqrt{d}}{2}\right\rfloor$,
- For contradiction, assume $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with $s<m / 2$.
- Pick an a_{i} which isn't a root of any Q_{j}, wlog a_{1}.
- Rewrite $\left(x-a_{1}\right)^{d}=\sum_{i=1}^{l} \alpha_{i} R_{i}^{e_{i}}(x)$ with linearly independent R_{i} of degree ≤ 2 and $I \leq s+m-1<3 m / 2$.
- Use Voorhoeve - Van Der Poorten lemma to bound multiplicity of a_{1} :

$$
d=\mathrm{N}_{\mathrm{a}_{1}}\left(\left(x-a_{1}\right)^{d}\right) \leq I-1+\mathrm{N}_{\mathrm{a}_{1}}\left(\mathrm{~W}\left(R_{1}^{e_{1}}, \ldots, R_{l}^{\prime}\right)\right)
$$

Sketch of the proof

- Remember $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ where $m=\left\lfloor\frac{\sqrt{d}}{2}\right\rfloor$,
- For contradiction, assume $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with $s<m / 2$.
- Pick an a_{i} which isn't a root of any Q_{j}, wlog a_{1}.
- Rewrite $\left(x-a_{1}\right)^{d}=\sum_{i=1}^{l} \alpha_{i} R_{i}^{e_{i}}(x)$ with linearly independent R_{i} of degree ≤ 2 and $I \leq s+m-1<3 m / 2$.
- Use Voorhoeve - Van Der Poorten lemma to bound multiplicity of a_{1} :

$$
d=\mathrm{N}_{\mathrm{a}_{1}}\left(\left(x-a_{1}\right)^{d}\right) \leq I-1+\mathrm{N}_{a_{1}}\left(\mathrm{~W}\left(R_{1}^{e_{1}}, \ldots, R_{l}^{\prime}\right)\right)
$$

- Factor out $R_{i}^{e_{i}-(I-1)}$ from each column of the Wronskian.

Sketch of the proof

- Remember $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ where $m=\left\lfloor\frac{\sqrt{d}}{2}\right\rfloor$,
- For contradiction, assume $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with $s<m / 2$.
- Pick an a_{i} which isn't a root of any Q_{j}, wlog a_{1}.
- Rewrite $\left(x-a_{1}\right)^{d}=\sum_{i=1}^{l} \alpha_{i} R_{i}^{e_{i}}(x)$ with linearly independent R_{i} of degree ≤ 2 and $I \leq s+m-1<3 m / 2$.
- Use Voorhoeve - Van Der Poorten lemma to bound multiplicity of a_{1} :

$$
d=\mathrm{N}_{\mathrm{a}_{1}}\left(\left(x-a_{1}\right)^{d}\right) \leq I-1+\mathrm{N}_{a_{1}}\left(\mathrm{~W}\left(R_{1}^{e_{1}}, \ldots, R_{l}^{\prime}\right)\right)
$$

- Factor out $R_{i}^{e_{i}-(I-1)}$ from each column of the Wronskian.
- Remaining determinant: degree bounded by $3 I(I-1) / 2$.

Sketch of the proof

- Remember $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ where $m=\left\lfloor\frac{\sqrt{d}}{2}\right\rfloor$,
- For contradiction, assume $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with $s<m / 2$.
- Pick an a_{i} which isn't a root of any Q_{j}, wlog a_{1}.
- Rewrite $\left(x-a_{1}\right)^{d}=\sum_{i=1}^{l} \alpha_{i} R_{i}^{e_{i}}(x)$ with linearly independent R_{i} of degree ≤ 2 and $I \leq s+m-1<3 m / 2$.
- Use Voorhoeve - Van Der Poorten lemma to bound multiplicity of a_{1} :

$$
d=\mathrm{N}_{a_{1}}\left(\left(x-a_{1}\right)^{d}\right) \leq I-1+\mathrm{N}_{a_{1}}\left(\mathrm{~W}\left(R_{1}^{e_{1}}, \ldots, R_{l}^{\prime}\right)\right)
$$

- Factor out $R_{i}^{e_{i}-(I-1)}$ from each column of the Wronskian.
- Remaining determinant: degree bounded by $3 I(I-1) / 2$.
- Combine to obtain :

$$
d \leq I-1+3 I(I-1) / 2<27 m^{2} / 8 \leq 27 d / 32
$$

A closer look

Take for example $I=2$:

$$
\mathrm{W}\left(R_{1}^{e_{1}}, R_{2}^{e_{2}}\right)=\left|\begin{array}{cc}
R_{1}^{e_{1}} & R_{2}^{e_{2}} \\
e_{1} R_{1}^{e_{1}-1} R_{1}^{\prime} & e_{2} R_{2}^{e_{2}-1} R_{2}^{\prime}
\end{array}\right|=R_{1}^{e_{1}-1} R_{2}^{e_{2}-1} \Delta
$$

where $\Delta=\left|\begin{array}{cc}R_{1} & R_{2} \\ e_{1} R_{1}^{\prime} & e_{2} R_{2}^{\prime}\end{array}\right|$

- $\mathrm{N}_{\mathrm{a}_{1}}\left(R_{1}^{e_{1}-1}\right)=\mathrm{N}_{\mathrm{a}_{1}}\left(R_{2}^{e_{2}-1}\right)=0$.
- The entries of Δ have low degree (here, at most 2); we bound $\mathrm{N}_{\mathrm{a}_{1}}(\Delta)$ by the degree of Δ.
- Possible room for improvement: better bound on $\mathrm{N}_{a_{1}}(\Delta)$?

Shifted derivatives

Definition

Let $f(x) \in \mathbb{K}[x]$ be a polynomial.
The span of the l-shifted k-th order derivatives of f is defined as:

$$
\left\langle x^{\leq i+l} \cdot f^{(i)}\right\rangle_{i \leq k} \stackrel{\text { def }}{=} \mathbb{K}-\operatorname{span}\left\{x^{j} \cdot f^{(i)}(x): i \leq k, j \leq i+I\right\}
$$

This forms a \mathbb{K}-vector space and we denote its dimension by:

$$
\operatorname{dim}\left\langle x^{\leq i+I} \cdot f^{(i)}\right\rangle_{i \leq k}
$$

This complexity measure is subadditive.

An upper bound for sums of powers

Proposition

For any polynomial f of degree d of the form $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with $\operatorname{deg} Q_{i} \leq t$ we have:

$$
\operatorname{dim}\left\langle x^{\leq i+l} \cdot f^{(i)}\right\rangle_{i \leq k} \leq s \cdot(I+k t+1) .
$$

An upper bound for sums of powers

Proposition

For any polynomial f of degree d of the form $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with $\operatorname{deg} Q_{i} \leq t$ we have:

$$
\operatorname{dim}\left\langle x^{\leq i+l} \cdot f^{(i)}\right\rangle_{i \leq k} \leq s \cdot(I+k t+1) .
$$

Proof.

- By subadditivity, it's enough to show that for $f=Q^{e_{i}}$ with $\operatorname{deg} Q \leq t$, we have $\operatorname{dim}\left\langle x^{\leq i+I} \cdot f^{(i)}\right\rangle_{i \leq k} \leq I+k t+1$.

An upper bound for sums of powers

Proposition

For any polynomial f of degree d of the form $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with $\operatorname{deg} Q_{i} \leq t$ we have:

$$
\operatorname{dim}\left\langle x^{\leq i+l} \cdot f^{(i)}\right\rangle_{i \leq k} \leq s \cdot(I+k t+1) .
$$

Proof.

- By subadditivity, it's enough to show that for $f=Q^{e_{i}}$ with $\operatorname{deg} Q \leq t$, we have $\operatorname{dim}\left\langle x^{\leq i+I} . f^{(i)}\right\rangle_{i \leq k} \leq I+k t+1$.
- Any $g \in\left\langle x^{\leq i+l} \cdot f^{(i)}\right\rangle_{i \leq k}$ is of the form $g=Q^{e_{i}-k} \cdot R$. Since $\operatorname{deg} g \leq e_{i} \cdot t+\Gamma$ we have $\operatorname{deg} R \leq I+k t$.

Shifted Differential Equations

Definition (SDE)

This is an equation: $\sum_{i=0}^{k} P_{i}(x) f^{(i)}(x)=0$
for some polynomials $P_{i} \in \mathbb{K}[X]$ with $\operatorname{deg} P_{i} \leq i+I$.
k is called the order and I is called the shift.

Shifted Differential Equations

Definition (SDE)

This is an equation: $\sum_{i=0}^{k} P_{i}(x) f^{(i)}(x)=0$
for some polynomials $P_{i} \in \mathbb{K}[X]$ with $\operatorname{deg} P_{i} \leq i+I$.
k is called the order and I is called the shift.

Proposition

If $f \in \mathbb{K}[X]$ doesn't satisfy any SDE of order k and shift I then $\left\langle x^{\leq i+l} \cdot f^{(i)}\right\rangle_{i \leq k}$ is of full dimension, i.e.,

$$
\operatorname{dim}\left\langle x^{\leq i+I} \cdot f^{(i)}\right\rangle_{i \leq k}=\sum_{i=0}^{k}(I+i+1)=(k+1) I+k(k+1) / 2
$$

The key lemma

Lemma

Let $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ where the a_{i} 's are distinct and $m \leq d$.
If f satisfies a SDE of order k and shift I then:
i) $k \geq m$, or
ii) $l>\frac{d}{m}-3 m / 2$

The key lemma

Lemma

Let $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ where the a_{i} 's are distinct and $m \leq d$.
If f satisfies a SDE of order k and shift I then:
i) $k \geq m$, or
ii) $I>\frac{d}{m}-3 m / 2$

Proof.

- Transform the SDE into a relation of the form:

$$
-Q_{1}(x)\left(x-a_{1}\right)^{d-k}=\sum_{i=2}^{m} Q_{i}(x)\left(x-a_{i}\right)^{d-k}
$$

It is nontrivial if $k<m$.

The key lemma

Lemma

Let $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ where the a_{i} 's are distinct and $m \leq d$.
If f satisfies a SDE of order k and shift I then:
i) $k \geq m$, or
ii) $I>\frac{d}{m}-3 m / 2$

Proof.

- Transform the SDE into a relation of the form:

$$
-Q_{1}(x)\left(x-a_{1}\right)^{d-k}=\sum_{i=2}^{m} Q_{i}(x)\left(x-a_{i}\right)^{d-k}
$$

It is nontrivial if $k<m$.

- Use the Wronskian (again!) to obtain:

$$
d-k \leq m-2+(m-1)(I+k)+\binom{m-1}{2}
$$

The lower bound

Theorem

For any $d, t \geq 2$ such that $t<\frac{d}{4}$, the polynomial $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ with distinct a_{i} 's and $m=\left\lfloor\sqrt{\frac{d}{t}}\right\rfloor$ is hard: If $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with each Q_{i} of degree $\leq t$ then $s=\Omega\left(\sqrt{\frac{d}{t}}\right)$.

The lower bound

Theorem

For any $d, t \geq 2$ such that $t<\frac{d}{4}$, the polynomial $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ with distinct a_{i} 's and $m=\left\lfloor\sqrt{\frac{d}{t}}\right\rfloor$ is hard:
If $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with each Q_{i} of degree $\leq t$ then $s=\Omega\left(\sqrt{\frac{d}{t}}\right)$.

Proof.

- Pick $k=m-1$ and $I=(d / m)-3 m / 2:\left\langle x^{\leq i+l} \cdot f^{(i)}\right\rangle_{i \leq k}$ is full.

The lower bound

Theorem

For any $d, t \geq 2$ such that $t<\frac{d}{4}$, the polynomial $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ with distinct a_{i} 's and $m=\left\lfloor\sqrt{\frac{d}{t}}\right\rfloor$ is hard:
If $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with each Q_{i} of degree $\leq t$ then $s=\Omega\left(\sqrt{\frac{d}{t}}\right)$.

Proof.

- Pick $k=m-1$ and $I=(d / m)-3 m / 2:\left\langle x^{\leq i+l} \cdot f^{(i)}\right\rangle_{i \leq k}$ is full.
- Hence $\operatorname{dim}\left\langle x^{\leq i+I} \cdot f^{(i)}\right\rangle_{i \leq k}=(k+1) I+k(k+1) / 2=\Omega(d)$.

The lower bound

Theorem

For any $d, t \geq 2$ such that $t<\frac{d}{4}$, the polynomial $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ with distinct a_{i} 's and $m=\left\lfloor\sqrt{\frac{d}{t}}\right\rfloor$ is hard:
If $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with each Q_{i} of degree $\leq t$ then $s=\Omega\left(\sqrt{\frac{d}{t}}\right)$.

Proof.

- Pick $k=m-1$ and $I=(d / m)-3 m / 2:\left\langle x^{\leq i+I} \cdot f^{(i)}\right\rangle_{i \leq k}$ is full.
- Hence $\operatorname{dim}\left\langle x^{\leq i+I} \cdot f^{(i)}\right\rangle_{i \leq k}=(k+1) I+k(k+1) / 2=\Omega(d)$.
- Upper bound for sums of powers: $\operatorname{dim}\left\langle x^{\leq i+I} \cdot f^{(i)}\right\rangle_{i \leq k} \leq s \cdot(I+k t+1)$.

The lower bound

Theorem

For any $d, t \geq 2$ such that $t<\frac{d}{4}$, the polynomial $f(x)=\sum_{i=1}^{m}\left(x-a_{i}\right)^{d}$ with distinct a_{i} 's and $m=\left\lfloor\sqrt{\frac{d}{t}}\right\rfloor$ is hard:
If $f=\sum_{i=1}^{s} \alpha_{i} Q_{i}^{e_{i}}$ with each Q_{i} of degree $\leq t$ then $s=\Omega\left(\sqrt{\frac{d}{t}}\right)$.

Proof.

- Pick $k=m-1$ and $I=(d / m)-3 m / 2:\left\langle x^{\leq i+l} \cdot f^{(i)}\right\rangle_{i \leq k}$ is full.
- Hence $\operatorname{dim}\left\langle x^{\leq i+I} \cdot f^{(i)}\right\rangle_{i \leq k}=(k+1) I+k(k+1) / 2=\Omega(d)$.
- Upper bound for sums of powers: $\operatorname{dim}\left\langle x^{\leq i+I} \cdot f^{(i)}\right\rangle_{i \leq k} \leq s \cdot(I+k t+1)$.
- This gives $s=\Omega\left(\frac{d}{l+k t+1}\right)$

Limitations of Shifted Derivatives

- Recall we wish to find f hard to write as:

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}}
$$

Limitations of Shifted Derivatives

- Recall we wish to find f hard to write as:

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}}
$$

- For any f of degree d, shifted derivatives cannot give a better bound than:

$$
s=\Omega\left(\sqrt{\frac{d}{t}}\right)
$$

Limitations of Shifted Derivatives

- Recall we wish to find f hard to write as:

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}}
$$

- For any f of degree d, shifted derivatives cannot give a better bound than:

$$
s=\Omega\left(\sqrt{\frac{d}{t}}\right)
$$

- Can the Wronskian do better?

Limitations of Shifted Derivatives

- Recall we wish to find f hard to write as:

$$
f(x)=\sum_{i=1}^{s} \alpha_{i} \cdot Q_{i}(x)^{e_{i}}
$$

- For any f of degree d, shifted derivatives cannot give a better bound than:

$$
s=\Omega\left(\sqrt{\frac{d}{t}}\right)
$$

- Can the Wronskian do better?
- When are the $\left(x-a_{i}\right)^{e_{i}}$ linearly independent?

A natural first step?

We are looking for an f which does not belong to any subspace of the form:

$$
\operatorname{Span}\left(Q_{1}^{e_{1}}, \ldots, Q_{s}^{e_{s}}\right)
$$

First step: find s-dimensional subspace of $\mathbb{K}_{d}[X]$ which is not of the form

$$
\operatorname{Span}\left(Q_{1}^{e_{1}}, \ldots, Q_{s}^{e_{s}}\right)
$$

