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Why univariate polynomials?

• Open problem 1.4 in survey by Chen, Kayal and Wigderson:
Find explicit family (fn) of univariate polynomials of degree n
and lower bound on circuit size > (log n)O(1).

• Our model: representations of the form

f (x) =
s∑

i=1

αi .Qi (x)ei ,

where deg(Qi ) ≤ t. Wanted: lower bound on s.

• This toy model is easier to analyze but still challenging,
even for t = 2 or (!) t = 1.

• A variation is closely connected to VP 6= VNP.
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Bounding sparsity(Qi ) instead of degree(Qi )

Consider the model:

f (x) =
s∑

i=1

αi .Qi (x)ei ,

where Qi has at most t monomials. Candidate hard polynomials:

•
2n∏
i=1

(X + i). Probably hard for general arithmetic circuits.

•
2n−1∑
i=0

22i(2
n−i−1)X i . Satisfies Kurz condition.

• (X + 1)2
n
. Seems hard if ei required to be small.

If VP = VNP, they can be represented with t = nO(
√
n),

s = nO(
√
n) and ei = O(

√
n).

• In 2 variables:
∑2n

i=1 X iY i2 (Newton polygon).
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Back to bounded degree

Recall:

f (x) =
s∑

i=1

αi .Qi (x)ei ,

where deg(Qi ) ≤ t.

• Expected lower bound: s = Ω(d/t).
Applies to “random” f by counting independent parameters.

• What we can prove:
s = Ω(

√
d/t) for some explicit polynomials f .
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Upper bounds for bounded degree

Recall:

f (x) =
s∑

i=1

αi .Qi (x)ei ,

where deg(Qi ) ≤ t.

• s = O((d/t)2) for any f (simple explicit construction).

• s = O(d/t) for most f
[On the Waring problem for polynomial rings.
Fröberg, Ottaviani, Shapiro, 2012]
for t = 1: [Polynomial interpolation in several variables.
Alexander - Hirschowitz, 1995]

• Worst case rank ≤ 2×(worst case border rank):
[Blekherman - Teitler, 2014]
simons.berkeley.edu/talks/grigoriy-blekherman-2014-11-10
Hence s = O(d/t) for any f (non-constructive).
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The method of partial derivatives

To prove that f is hard to compute,
we seek a “complexity measure” Γ such that:

• Γ(f ) is high.

• Γ(g) is low if g has small circuit complexity.

One popular measure for multivariate polynomials:

• ∂f = space spanned by all partial derivatives ∂αf /∂xα.

• Γ(f ) = dim(∂f ).

Abject failure for univariate polynomials!
Indeed, Γ(f ) = d + 1 for all f of degree d .
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The method of shifted derivatives

• To fix this: consider the shifted derivatives x i f (j)(x).

• Degree is deg(f ) + i − j ⇒ we can expect linear dependencies.

• This is just the “method of shifted partial derivatives”
applied to univariate polynomials.
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The Wronskian

Definition

The Wronskian W (f1, . . . , fn) is defined by

W (f1, . . . , fn) (x) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) . . . fn(x)
f ′1(x) f ′2(x) . . . f ′n(x)

...
...

. . .
...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

∣∣∣∣∣∣∣∣∣

Proposition

For f1, . . . , fn ∈ K(X ), the functions are linearly dependent if and
only if the Wronskian W (f1, . . . , fn) vanishes everywhere.

We also use the Wronskian to bound multiplicities of roots.
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Our results

• Hard polynomial:
∏2t

k=1(x − ak)d/2t .
Lower bound: s = Ω(

√
d/t). Method: Wronskian.

• Hard polynomial: f (x) =
∑m

i=1(x − ai )
d .

deg Qi ei m s Method Optimality

1 = d d
2 Ω (d) Wronskian Yes

2
√
d
2 Ω

(√
d
)

Wronskian Yes

t 2
3

√
d
t Ω

(
1
t

√
d
t

)
Wronskian

t ≤ d
t

√
2
3

√
d
t Ω

(√
d
t

)
Wronskian Yes

t
√

d
t Ω

(√
d
t

)
Shifted derivatives Yes
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Linear independence of powers of linear forms

For any distinct ai ’s in K, the family
S = {(x − a1)d , . . . , (x − ad+1)d} is a basis of Kd [X ].
Proof.

Wr(x) =

∣∣∣∣∣∣∣∣∣
(x − a1)d . . . (x − ad+1)d

d(x − a1)d−1 . . . d(x − ad+1)d−1

...
. . .

...
d! . . . d!

∣∣∣∣∣∣∣∣∣
For any z ∈ C, define bi = z − ai and we have:

Wr(z) =

∣∣∣∣∣∣∣∣∣
bd
1 . . . bd

d+1

d · bd−1
1 . . . d · bd−1

d+1
...

. . .
...

d! . . . d!

∣∣∣∣∣∣∣∣∣ = c ·

∣∣∣∣∣∣∣∣∣
bd
1 . . . bd

d+1

bd−1
1 . . . bd−1

d+1
...

. . .
...

1 . . . 1

∣∣∣∣∣∣∣∣∣
Vandermonde matrix: |.| =

∏
i 6=j(bi − bj) =

∏
i 6=j(aj − ai ) 6= 0.

⇒Wr 6≡ 0⇒ S is linearly independent.
10 / 22
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Lower bound for t = 1

Theorem

For any d, the polynomial f (x) =
∑m

i=1(x − ai )
d , with distinct ai ’s

and m =
⌊
d
2

⌋
, is optimally hard in the following sense:

any representation of f of the form f =
∑s

i=1 αi`
d
i ,

with each `i of degree 1, must satisfy s ≥
⌊
d
2

⌋
.

Proof.

For contradiction, assume that f (X ) =
∑s

i=1 αi`
d
i with s < m.

We obtain the nontrivial linear relation

m∑
i=1

(x − ai )
d −

s∑
i=1

αi`
d
i = 0

between m + s < d d-th powers: contradiction.

Stronger bound by Johannes Kepple (Candidatus Scientiarum).
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Bounding multiplicities with the Wronskian

Let Nz0(F ) denote the multiplicity of z0 as a root of F .

Lemma (Voorhoeve and Van Der Poorten, 1975)

Let Q1, . . . ,Qm be linearly independent polynomials,
and F (z) =

∑m
i=1 Qi (z). Then for any z0 ∈ K :

Nz0 (F ) ≤ m − 1 + Nz0 (W (Q1, . . . ,Qm))

Proof.

Note that W (Q1, . . . ,Qm) = W (Q1, . . . ,Qm−1,F ).
Expand along last column:

W (Q1, . . . ,Qm−1,F ) =
m−1∑
i=0

BiF
(i)

and Nz0(F (i)) ≥ Nz0(F )− (m − 1).

12 / 22
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Lower bound for t = 2

Theorem

For any t, d, the polynomial f (x) =
∑m

i=1(x − ai )
d ,

with distinct ai ’s and m =
⌊√

d
2

⌋
, is hard in the following sense:

any representation of f of the form f =
s∑

i=1
αiQ

ei
i ,

with each Qi of degree ≤ 2, must satisfy:

s = Ω
(√

d
)

13 / 22
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Sketch of the proof

• Remember f (x) =
∑m

i=1(x − ai )
d where m =

⌊√
d
2

⌋
,

• For contradiction, assume f =
∑s

i=1 αiQ
ei
i with s < m/2.

• Pick an ai which isn’t a root of any Qj , wlog a1.

• Rewrite (x − a1)d =
∑l

i=1 αiR
ei
i (x)

with linearly independent Ri of degree ≤ 2 and l ≤ s + m − 1 < 3m/2.

• Use Voorhoeve - Van Der Poorten lemma to bound multiplicity of a1:

d = Na1

(
(x − a1)d

)
≤ l − 1 + Na1

(
W
(
Re1
1 , . . . ,R

l
l

))
• Factor out R

ei−(l−1)
i from each column of the Wronskian.

• Remaining determinant: degree bounded by 3l(l − 1)/2.

• Combine to obtain :

d ≤ l − 1 + 3l(l − 1)/2 < 27m2/8 ≤ 27d/32.
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A closer look

Take for example l = 2:

W (Re1
1 ,R

e2
2 ) =

∣∣∣∣ Re1
1 Re2

2

e1Re1−1
1 R ′1 e2Re2−1

2 R ′2

∣∣∣∣ = Re1−1
1 Re2−1

2 ∆

where ∆ =

∣∣∣∣ R1 R2

e1R ′1 e2R ′2

∣∣∣∣
• Na1

(
Re1−1
1

)
= Na1

(
Re2−1
2

)
= 0.

• The entries of ∆ have low degree (here, at most 2);
we bound Na1 (∆) by the degree of ∆.

• Possible room for improvement: better bound on Na1 (∆)?
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Shifted derivatives

Definition

Let f (x) ∈ K[x ] be a polynomial.
The span of the l-shifted k-th order derivatives of f is defined as:〈

x≤i+l · f (i)
〉
i≤k

def
= K-span

{
x j · f (i)(x) : i ≤ k , j ≤ i + l

}
This forms a K-vector space and we denote its dimension by:

dim
〈

x≤i+l · f (i)
〉
i≤k

This complexity measure is subadditive.
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An upper bound for sums of powers

Proposition

For any polynomial f of degree d of the form f =
∑s

i=1 αiQ
ei
i

with deg Qi ≤ t we have:

dim
〈

x≤i+l · f (i)
〉
i≤k
≤ s · (l + kt + 1).

Proof.

• By subadditivity, it’s enough to show that for f = Qei

with deg Q ≤ t, we have dim
〈
x≤i+l · f (i)

〉
i≤k ≤ l + kt + 1.

• Any g ∈
〈
x≤i+l · f (i)

〉
i≤k is of the form g = Qei−k · R.

Since deg g ≤ ei · t + l we have deg R ≤ l + kt.
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Shifted Differential Equations

Definition (SDE)

This is an equation:
k∑

i=0

Pi (x)f (i)(x) = 0

for some polynomials Pi ∈ K[X ] with deg Pi ≤ i + l .
k is called the order and l is called the shift.

Proposition

If f ∈ K[X ] doesn’t satisfy any SDE of order k and shift l
then

〈
x≤i+l · f (i)

〉
i≤k is of full dimension , i.e.,

dim
〈

x≤i+l · f (i)
〉
i≤k

=
k∑

i=0

(l + i + 1) = (k + 1)l + k(k + 1)/2.
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The key lemma

Lemma

Let f (x) =
m∑
i=1

(x − ai )
d where the ai ’s are distinct and m ≤ d.

If f satisfies a SDE of order k and shift l then:

i) k ≥ m, or

ii) l > d
m − 3m/2

Proof.

• Transform the SDE into a relation of the form:

−Q1(x)(x − a1)d−k =
m∑
i=2

Qi (x)(x − ai )
d−k

It is nontrivial if k < m.

• Use the Wronskian (again!) to obtain:

d − k ≤ m − 2 + (m − 1)(l + k) +
(m−1

2

)
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The lower bound

Theorem

For any d , t ≥ 2 such that t < d
4 , the polynomial f (x) =

∑m
i=1(x − ai )

d

with distinct ai ’s and m =

⌊√
d
t

⌋
is hard:

If f =
∑s

i=1 αiQ
ei
i with each Qi of degree ≤ t then s = Ω

(√
d
t

)
.

Proof.

• Pick k = m − 1 and l = (d/m)− 3m/2:
〈
x≤i+l · f (i)

〉
i≤k is full.

• Hence dim
〈
x≤i+l · f (i)

〉
i≤k = (k + 1)l + k(k + 1)/2 = Ω(d).

• Upper bound for sums of powers:
dim

〈
x≤i+l · f (i)

〉
i≤k ≤ s · (l + kt + 1).

• This gives s = Ω
(

d
l+kt+1

)
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Limitations of Shifted Derivatives

• Recall we wish to find f hard to write as:

f (x) =
s∑

i=1

αi .Qi (x)ei

• For any f of degree d ,
shifted derivatives cannot give a better bound than:

s = Ω

(√
d

t

)

• Can the Wronskian do better?

• When are the (x − ai )
ei linearly independent?
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A natural first step?

We are looking for an f which does not belong to any subspace
of the form:

Span(Qe1
1 , . . . ,Q

es
s ).

First step: find s-dimensional subspace of Kd [X ] which is not
of the form

Span(Qe1
1 , . . . ,Q

es
s ).
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