Lower bounds for sums of powers of low degree univariate polynomials

Pascal Koiran Joint work with: Neeraj Kayal, Timothée Pecatte and Chandan Saha

WACT 2015, Saarbrücken

Open problem 1.4 in survey by Chen, Kayal and Wigderson:
 Find explicit family (f_n) of univariate polynomials of degree n and lower bound on circuit size > (log n)^{O(1)}.

- Open problem 1.4 in survey by Chen, Kayal and Wigderson:
 Find explicit family (f_n) of univariate polynomials of degree n and lower bound on circuit size > (log n)^{O(1)}.
- Our model: representations of the form

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i},$$

where deg(Q_i) $\leq t$. Wanted: lower bound on *s*.

- Open problem 1.4 in survey by Chen, Kayal and Wigderson:
 Find explicit family (f_n) of univariate polynomials of degree n and lower bound on circuit size > (log n)^{O(1)}.
- Our model: representations of the form

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i},$$

where deg(Q_i) $\leq t$. Wanted: lower bound on *s*.

• This toy model is easier to analyze but still challenging, even for t = 2 or (!) t = 1.

- Open problem 1.4 in survey by Chen, Kayal and Wigderson:
 Find explicit family (f_n) of univariate polynomials of degree n and lower bound on circuit size > (log n)^{O(1)}.
- Our model: representations of the form

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i},$$

where deg(Q_i) $\leq t$. Wanted: lower bound on *s*.

- This toy model is easier to analyze but still challenging, even for t = 2 or (!) t = 1.
- A variation is closely connected to $VP \neq VNP$.

Consider the model:

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i},$$

where Q_i has at most t monomials. Candidate hard polynomials: $\frac{2^n}{\prod} (X_i + i) = \sum_{i=1}^{n} (1 + i) + \sum_{i=1}^{n} (1 + i$

• $\prod_{i=1}^{\infty} (X + i)$. Probably hard for general arithmetic circuits.

Consider the model:

2ⁿ

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i},$$

where Q_i has at most t monomials. Candidate hard polynomials:

- $\prod_{i=1}^{i=1} (X + i)$. Probably hard for general arithmetic circuits. $2^{n}-1$
- $\sum_{i=0}^{2^{n-1}} 2^{2i(2^n-i-1)} X^i$. Satisfies Kurz condition.

Consider the model:

 2^n

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i},$$

where Q_i has at most t monomials. Candidate hard polynomials:

- $\prod_{i=1}^{\infty} (X + i)$. Probably hard for general arithmetic circuits.
- $\sum_{i=0}^{2^n-1} 2^{2i(2^n-i-1)} X^i$. Satisfies Kurz condition.
- $(X+1)^{2^n}$. Seems hard if e_i required to be small.

Consider the model:

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i},$$

where Q_i has at most *t* monomials. Candidate hard polynomials:

- $\prod_{i=1}^{\infty} (X + i)$. Probably hard for general arithmetic circuits.
- $\sum_{i=0}^{2^n-1} 2^{2i(2^n-i-1)} X^i$. Satisfies Kurz condition.
- $(X+1)^{2^n}$. Seems hard if e_i required to be small.

If VP = VNP, they can be represented with $t = n^{O(\sqrt{n})}$, $s = n^{O(\sqrt{n})}$ and $e_i = O(\sqrt{n})$.

Consider the model:

 2^n

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i},$$

where Q_i has at most t monomials. Candidate hard polynomials:

- $\prod_{i=1}^{\infty} (X + i)$. Probably hard for general arithmetic circuits.
- $\sum_{i=0}^{2^n-1} 2^{2i(2^n-i-1)} X^i$. Satisfies Kurz condition.
- $(X + 1)^{2^n}$. Seems hard if e_i required to be small.
- If VP = VNP, they can be represented with $t = n^{O(\sqrt{n})}$, $s = n^{O(\sqrt{n})}$ and $e_i = O(\sqrt{n})$.
 - In 2 variables: $\sum_{i=1}^{2^n} X^i Y^{i^2}$ (Newton polygon).

Back to bounded degree

Recall:

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i},$$

where $\deg(Q_i) \leq t$.

• Expected lower bound: $s = \Omega(d/t)$. Applies to "random" f by counting independent parameters.

Back to bounded degree

Recall:

$$f(x) = \sum_{i=1}^{s} \alpha_i \cdot Q_i(x)^{e_i},$$

where $\deg(Q_i) \leq t$.

- Expected lower bound: $s = \Omega(d/t)$. Applies to "random" f by counting independent parameters.
- What we can prove:
 - $s = \Omega(\sqrt{d/t})$ for some explicit polynomials f.

Upper bounds for bounded degree

Recall:

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i},$$

where $\deg(Q_i) \leq t$.

• $s = O((d/t)^2)$ for any f (simple explicit construction).

Upper bounds for bounded degree

Recall:

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i},$$

where $\deg(Q_i) \leq t$.

- $s = O((d/t)^2)$ for any f (simple explicit construction).
- s = O(d/t) for most f[On the Waring problem for polynomial rings. Fröberg, Ottaviani, Shapiro, 2012] for t = 1: [Polynomial interpolation in several variables. Alexander - Hirschowitz, 1995]

Upper bounds for bounded degree

Recall:

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i},$$

where $\deg(Q_i) \leq t$.

- $s = O((d/t)^2)$ for any f (simple explicit construction).
- s = O(d/t) for most f[On the Waring problem for polynomial rings. Fröberg, Ottaviani, Shapiro, 2012] for t = 1: [Polynomial interpolation in several variables. Alexander - Hirschowitz, 1995]
- Worst case rank ≤ 2×(worst case border rank): [Blekherman - Teitler, 2014] simons.berkeley.edu/talks/grigoriy-blekherman-2014-11-10 Hence s = O(d/t) for any f (non-constructive).

The method of partial derivatives

To prove that f is hard to compute,

we seek a "complexity measure" Γ such that:

- Γ(f) is high.
- $\Gamma(g)$ is low if g has small circuit complexity.

The method of partial derivatives

To prove that f is hard to compute,

we seek a "complexity measure" $\boldsymbol{\Gamma}$ such that:

- Γ(f) is high.
- $\Gamma(g)$ is low if g has small circuit complexity.

One popular measure for multivariate polynomials:

- ∂f = space spanned by all partial derivatives $\partial^{\alpha} f / \partial x^{\alpha}$.
- $\Gamma(f) = \dim(\partial f)$.

The method of partial derivatives

To prove that f is hard to compute,

we seek a "complexity measure" Γ such that:

- Γ(f) is high.
- $\Gamma(g)$ is low if g has small circuit complexity.

One popular measure for multivariate polynomials:

- ∂f = space spanned by all partial derivatives $\partial^{\alpha} f / \partial x^{\alpha}$.
- $\Gamma(f) = \dim(\partial f)$.

Abject failure for univariate polynomials! Indeed, $\Gamma(f) = d + 1$ for all f of degree d.

The method of shifted derivatives

- To fix this: consider the shifted derivatives $x^i f^{(j)}(x)$.
- Degree is $deg(f) + i j \Rightarrow$ we can expect linear dependencies.
- This is just the "method of shifted partial derivatives" applied to univariate polynomials.

The Wronskian

Definition

The Wronskian $W(f_1, \ldots, f_n)$ is defined by

$$W(f_1,...,f_n)(x) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \dots & f_n^{(n-1)} \end{vmatrix}$$

The Wronskian

Definition

The Wronskian $W(f_1, \ldots, f_n)$ is defined by

$$W(f_1,...,f_n)(x) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \dots & f_n^{(n-1)} \end{vmatrix}$$

Proposition

For $f_1, \ldots, f_n \in \mathbb{K}(X)$, the functions are linearly dependent if and only if the Wronskian W (f_1, \ldots, f_n) vanishes everywhere.

We also use the Wronskian to bound multiplicities of roots.

• Hard polynomial: $\prod_{k=1}^{2t} (x - a_k)^{d/2t}$. Lower bound: $s = \Omega(\sqrt{d/t})$. Method: Wronskian.

- Hard polynomial: $\prod_{k=1}^{2t} (x a_k)^{d/2t}$. Lower bound: $s = \Omega(\sqrt{d/t})$. Method: Wronskian.
- Hard polynomial: $f(x) = \sum_{i=1}^{m} (x a_i)^d$.

- Hard polynomial: $\prod_{k=1}^{2t} (x a_k)^{d/2t}$. Lower bound: $s = \Omega(\sqrt{d/t})$. Method: Wronskian.
- Hard polynomial: $f(x) = \sum_{i=1}^{m} (x a_i)^d$.

$\deg Q_i$	ei	т	S	Method	Optimality

- Hard polynomial: $\prod_{k=1}^{2t} (x a_k)^{d/2t}$. Lower bound: $s = \Omega(\sqrt{d/t})$. Method: Wronskian.
- Hard polynomial: $f(x) = \sum_{i=1}^{m} (x a_i)^d$.

$\deg Q_i$	ei	т	5	Method	Optimality
1	= d	$\frac{d}{2}$	$\Omega(d)$	Wronskian	Yes

- Hard polynomial: $\prod_{k=1}^{2t} (x a_k)^{d/2t}$. Lower bound: $s = \Omega(\sqrt{d/t})$. Method: Wronskian.
- Hard polynomial: $f(x) = \sum_{i=1}^{m} (x a_i)^d$.

$\deg Q_i$	ei	т	5	Method	Optimality
1	= d	$\frac{d}{2}$	$\Omega(d)$	Wronskian	Yes
2		$\frac{\sqrt{d}}{2}$	$\Omega\left(\sqrt{d}\right)$	Wronskian	Yes

- Hard polynomial: $\prod_{k=1}^{2t} (x a_k)^{d/2t}$. Lower bound: $s = \Omega(\sqrt{d/t})$. Method: Wronskian.
- Hard polynomial: $f(x) = \sum_{i=1}^{m} (x a_i)^d$.

$\deg Q_i$	ei	т	5	Method	Optimality
1	= d	$\frac{d}{2}$	$\Omega(d)$	Wronskian	Yes
2		$\frac{\sqrt{d}}{2}$	$\Omega\left(\sqrt{d}\right)$	Wronskian	Yes
t		$\frac{2}{3}\sqrt{\frac{d}{t}}$	$\Omega\left(\frac{1}{t}\sqrt{\frac{d}{t}}\right)$	Wronskian	

- Hard polynomial: $\prod_{k=1}^{2t} (x a_k)^{d/2t}$. Lower bound: $s = \Omega(\sqrt{d/t})$. Method: Wronskian.
- Hard polynomial: $f(x) = \sum_{i=1}^{m} (x a_i)^d$.

$\deg Q_i$	ei	т	5	Method	Optimality
1	= d	$\frac{d}{2}$	$\Omega(d)$	Wronskian	Yes
2		$\frac{\sqrt{d}}{2}$	$\Omega\left(\sqrt{d}\right)$	Wronskian	Yes
t		$\frac{2}{3}\sqrt{\frac{d}{t}}$	$\Omega\left(\frac{1}{t}\sqrt{\frac{d}{t}}\right)$	Wronskian	
t	$\leq \frac{d}{t}$	$\frac{\sqrt{2}}{3} \sqrt{\frac{d}{t}}$	$\Omega\left(\sqrt{\frac{d}{t}}\right)$	Wronskian	Yes

- Hard polynomial: $\prod_{k=1}^{2t} (x a_k)^{d/2t}$. Lower bound: $s = \Omega(\sqrt{d/t})$. Method: Wronskian.
- Hard polynomial: $f(x) = \sum_{i=1}^{m} (x a_i)^d$.

$\deg Q_i$	ei	т	S	Method	Optimality
1	= d	$\frac{d}{2}$	$\Omega(d)$	Wronskian	Yes
2		$\frac{\sqrt{d}}{2}$	$\Omega\left(\sqrt{d}\right)$	Wronskian	Yes
t		$\frac{2}{3}\sqrt{\frac{d}{t}}$	$\Omega\left(\frac{1}{t}\sqrt{\frac{d}{t}}\right)$	Wronskian	
t	$\leq \frac{d}{t}$	$\frac{\sqrt{2}}{3} \sqrt{\frac{d}{t}}$	$\Omega\left(\sqrt{\frac{d}{t}}\right)$	Wronskian	Yes
t		$\sqrt{\frac{d}{t}}$	$\Omega\left(\sqrt{\frac{d}{t}}\right)$	Shifted derivatives	Yes

Linear independence of powers of linear forms

For any distinct a_i 's in \mathbb{K} , the family $S = \{(x - a_1)^d, \dots, (x - a_{d+1})^d\}$ is a basis of $\mathbb{K}_d[X]$. *Proof.*

$$Wr(x) = \begin{vmatrix} (x - a_1)^d & \dots & (x - a_{d+1})^d \\ d(x - a_1)^{d-1} & \dots & d(x - a_{d+1})^{d-1} \\ \vdots & \ddots & \vdots \\ d! & \dots & d! \end{vmatrix}$$

For any $z \in \mathbb{C}$, define $b_i = z - a_i$ and we have:

$$\mathsf{Wr}(z) = \begin{vmatrix} b_1^d & \dots & b_{d+1}^d \\ d \cdot b_1^{d-1} & \dots & d \cdot b_{d+1}^{d-1} \\ \vdots & \ddots & \vdots \\ d! & \dots & d! \end{vmatrix} = c \cdot \begin{vmatrix} b_1^d & \dots & b_{d+1}^d \\ b_1^{d-1} & \dots & b_{d+1}^d \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{vmatrix}$$

Vandermonde matrix: $|.| = \prod_{i \neq j} (b_i - b_j) = \prod_{i \neq j} (a_j - a_i) \neq 0$. $\Rightarrow Wr \neq 0 \Rightarrow S$ is linearly independent.

Theorem

For any d, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$, with distinct a_i 's and $m = \lfloor \frac{d}{2} \rfloor$, is optimally hard in the following sense: any representation of f of the form $f = \sum_{i=1}^{s} \alpha_i \ell_i^d$, with each ℓ_i of degree 1, must satisfy $s \ge \lfloor \frac{d}{2} \rfloor$.

Theorem

For any d, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$, with distinct a_i 's and $m = \lfloor \frac{d}{2} \rfloor$, is optimally hard in the following sense: any representation of f of the form $f = \sum_{i=1}^{s} \alpha_i \ell_i^d$, with each ℓ_i of degree 1, must satisfy $s \ge \lfloor \frac{d}{2} \rfloor$.

Proof.

For contradiction, assume that $f(X) = \sum_{i=1}^{s} \alpha_i \ell_i^d$ with s < m. We obtain the nontrivial linear relation

$$\sum_{i=1}^m (x-a_i)^d - \sum_{i=1}^s \alpha_i \ell_i^d = 0$$

between m + s < d d-th powers: contradiction.

Theorem

For any d, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$, with distinct a_i 's and $m = \lfloor \frac{d}{2} \rfloor$, is optimally hard in the following sense: any representation of f of the form $f = \sum_{i=1}^{s} \alpha_i \ell_i^d$, with each ℓ_i of degree 1, must satisfy $s \ge \lfloor \frac{d}{2} \rfloor$.

Proof.

For contradiction, assume that $f(X) = \sum_{i=1}^{s} \alpha_i \ell_i^d$ with s < m. We obtain the nontrivial linear relation

$$\sum_{i=1}^m (x-a_i)^d - \sum_{i=1}^s \alpha_i \ell_i^d = 0$$

between m + s < d d-th powers: contradiction.

Stronger bound by Johannes Kepple (Candidatus Scientiarum).

Bounding multiplicities with the Wronskian

Let $N_{z_0}(F)$ denote the multiplicity of z_0 as a root of F.

Lemma (Voorhoeve and Van Der Poorten, 1975)

Let Q_1, \ldots, Q_m be linearly independent polynomials, and $F(z) = \sum_{i=1}^m Q_i(z)$. Then for any $z_0 \in K$:

 $\mathsf{N}_{z_0}(F) \leq m - 1 + \mathsf{N}_{z_0}(\mathsf{W}(Q_1, \ldots, Q_m))$

Bounding multiplicities with the Wronskian

Let $N_{z_0}(F)$ denote the multiplicity of z_0 as a root of F.

Lemma (Voorhoeve and Van Der Poorten, 1975)

Let Q_1, \ldots, Q_m be linearly independent polynomials, and $F(z) = \sum_{i=1}^m Q_i(z)$. Then for any $z_0 \in K$:

$$\mathsf{N}_{z_0}\left(\mathsf{F}
ight) \leq m-1+\mathsf{N}_{z_0}\left(\mathsf{W}\left(\mathit{Q}_1,\ldots,\mathit{Q}_m
ight)
ight)$$

Note that
$$W(Q_1, \ldots, Q_m) = W(Q_1, \ldots, Q_{m-1}, F)$$
.
Expand along last column:

$$W(Q_1,...,Q_{m-1},F) = \sum_{i=0}^{m-1} B_i F^{(i)}$$

and
$$N_{z_0}(F^{(i)}) \ge N_{z_0}(F) - (m-1).$$

Theorem

For any t, d, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$, with distinct a_i 's and $m = \lfloor \frac{\sqrt{d}}{2} \rfloor$, is hard in the following sense: any representation of f of the form $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$, with each Q_i of degree ≤ 2 , must satisfy:

$$s = \Omega\left(\sqrt{d}\right)$$

• Remember
$$f(x) = \sum_{i=1}^{m} (x - a_i)^d$$
 where $m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor$,

• Remember
$$f(x) = \sum_{i=1}^{m} (x - a_i)^d$$
 where $m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor$,

• For contradiction, assume $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with s < m/2.

• Remember
$$f(x) = \sum_{i=1}^{m} (x - a_i)^d$$
 where $m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor$,

- For contradiction, assume $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with s < m/2.
- Pick an a_i which isn't a root of any Q_j , wlog a_1 .

- Remember $f(x) = \sum_{i=1}^{m} (x a_i)^d$ where $m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor$,
- For contradiction, assume $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with s < m/2.
- Pick an a_i which isn't a root of any Q_j , wlog a_1 .
- Rewrite $(x a_1)^d = \sum_{i=1}^{l} \alpha_i R_i^{e_i}(x)$ with linearly independent R_i of degree ≤ 2 and $l \leq s + m - 1 < 3m/2$.

- Remember $f(x) = \sum_{i=1}^{m} (x a_i)^d$ where $m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor$,
- For contradiction, assume $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with s < m/2.
- Pick an a_i which isn't a root of any Q_j , wlog a_1 .
- Rewrite $(x a_1)^d = \sum_{i=1}^{l} \alpha_i R_i^{e_i}(x)$ with linearly independent R_i of degree ≤ 2 and $l \leq s + m - 1 < 3m/2$.
- Use Voorhoeve Van Der Poorten lemma to bound multiplicity of *a*₁:

$$d = \mathsf{N}_{a_1}\left((x - a_1)^d\right) \le l - 1 + \mathsf{N}_{a_1}\left(\mathsf{W}\left(\mathsf{R}_1^{e_1}, \dots, \mathsf{R}_l^{l}\right)\right)$$

- Remember $f(x) = \sum_{i=1}^{m} (x a_i)^d$ where $m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor$,
- For contradiction, assume $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with s < m/2.
- Pick an a_i which isn't a root of any Q_j , wlog a_1 .
- Rewrite $(x a_1)^d = \sum_{i=1}^{l} \alpha_i R_i^{e_i}(x)$ with linearly independent R_i of degree ≤ 2 and $l \leq s + m - 1 < 3m/2$.
- Use Voorhoeve Van Der Poorten lemma to bound multiplicity of *a*₁:

$$d = \mathsf{N}_{a_1}\left((x - a_1)^d\right) \le l - 1 + \mathsf{N}_{a_1}\left(\mathsf{W}\left(R_1^{e_1}, \dots, R_l^{l}\right)\right)$$

• Factor out $R_i^{e_i-(l-1)}$ from each column of the Wronskian.

• Remember
$$f(x) = \sum_{i=1}^{m} (x - a_i)^d$$
 where $m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor$,

- For contradiction, assume $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with s < m/2.
- Pick an a_i which isn't a root of any Q_j , wlog a_1 .
- Rewrite $(x a_1)^d = \sum_{i=1}^{l} \alpha_i R_i^{e_i}(x)$ with linearly independent R_i of degree ≤ 2 and $l \leq s + m - 1 < 3m/2$.
- Use Voorhoeve Van Der Poorten lemma to bound multiplicity of *a*₁:

$$d = \mathsf{N}_{\mathsf{a}_1}\left((x - \mathsf{a}_1)^d\right) \le l - 1 + \mathsf{N}_{\mathsf{a}_1}\left(\mathsf{W}\left(\mathsf{R}_1^{\mathsf{e}_1}, \dots, \mathsf{R}_l^{\prime}\right)\right)$$

- Factor out $R_i^{e_i-(l-1)}$ from each column of the Wronskian.
- Remaining determinant: degree bounded by 3I(I-1)/2.

- Remember $f(x) = \sum_{i=1}^{m} (x a_i)^d$ where $m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor$,
- For contradiction, assume $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with s < m/2.
- Pick an a_i which isn't a root of any Q_j , wlog a_1 .
- Rewrite $(x a_1)^d = \sum_{i=1}^{l} \alpha_i R_i^{e_i}(x)$ with linearly independent R_i of degree ≤ 2 and $l \leq s + m - 1 < 3m/2$.
- Use Voorhoeve Van Der Poorten lemma to bound multiplicity of *a*₁:

$$d = \mathsf{N}_{\mathsf{a}_1}\left((x - \mathsf{a}_1)^d\right) \le l - 1 + \mathsf{N}_{\mathsf{a}_1}\left(\mathsf{W}\left(\mathsf{R}_1^{\mathsf{e}_1}, \dots, \mathsf{R}_l^{\prime}\right)\right)$$

- Factor out $R_i^{e_i-(l-1)}$ from each column of the Wronskian.
- Remaining determinant: degree bounded by 3I(I-1)/2.
- Combine to obtain :

$$d \le l - 1 + 3l(l - 1)/2 < 27m^2/8 \le 27d/32.$$

A closer look

Take for example l = 2:

$$\begin{split} \mathsf{W}\left(R_{1}^{e_{1}},R_{2}^{e_{2}}\right) &= \begin{vmatrix} R_{1}^{e_{1}} & R_{2}^{e_{2}} \\ e_{1}R_{1}^{e_{1}-1}R_{1}' & e_{2}R_{2}^{e_{2}-1}R_{2}' \end{vmatrix} = R_{1}^{e_{1}-1}R_{2}^{e_{2}-1}\Delta \\ \text{where } \Delta &= \begin{vmatrix} R_{1} & R_{2} \\ e_{1}R_{1}' & e_{2}R_{2}' \end{vmatrix} \\ \bullet \ \mathsf{N}_{a_{1}}\left(R_{1}^{e_{1}-1}\right) &= \mathsf{N}_{a_{1}}\left(R_{2}^{e_{2}-1}\right) = \mathsf{0}. \end{split}$$

- The entries of Δ have low degree (here, at most 2); we bound N_{a1} (Δ) by the degree of Δ.
- Possible room for improvement: better bound on $N_{a_1}(\Delta)$?

Shifted derivatives

Definition

Let $f(x) \in \mathbb{K}[x]$ be a polynomial.

The span of the I-shifted k-th order derivatives of f is defined as:

$$\left\langle x^{\leq i+l} \cdot f^{(i)} \right\rangle_{i \leq k} \stackrel{\text{def}}{=} \mathbb{K}$$
-span $\left\{ x^j \cdot f^{(i)}(x) : i \leq k, j \leq i+l \right\}$

This forms a \mathbb{K} -vector space and we denote its dimension by:

$$\dim \left\langle x^{\leq i+l} \cdot f^{(i)} \right\rangle_{i \leq k}$$

This complexity measure is subadditive.

An upper bound for sums of powers

Proposition

For any polynomial f of degree d of the form $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with deg $Q_i \leq t$ we have:

$$\dim \left\langle x^{\leq i+l} \cdot f^{(i)} \right\rangle_{i \leq k} \leq s \cdot (l+kt+1).$$

An upper bound for sums of powers

Proposition

For any polynomial f of degree d of the form $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with deg $Q_i \leq t$ we have:

$$\dim \left\langle x^{\leq i+l} \cdot f^{(i)} \right\rangle_{i \leq k} \leq s \cdot (l+kt+1).$$

Proof.

• By subadditivity, it's enough to show that for $f = Q^{e_i}$ with deg $Q \le t$, we have dim $\langle x^{\le i+l} \cdot f^{(i)} \rangle_{i \le k} \le l + kt + 1$.

An upper bound for sums of powers

Proposition

For any polynomial f of degree d of the form $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with deg $Q_i \leq t$ we have:

$$\dim \left\langle x^{\leq i+l} \cdot f^{(i)} \right\rangle_{i \leq k} \leq s \cdot (l+kt+1).$$

- By subadditivity, it's enough to show that for f = Q^{e_i} with deg Q ≤ t, we have dim ⟨x^{≤i+l} · f⁽ⁱ⁾⟩_{i≤k} ≤ l + kt + 1.
- Any $g \in \langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k}$ is of the form $g = Q^{e_i k} \cdot R$. Since deg $g \leq e_i \cdot t + l$ we have deg $R \leq l + kt$.

Shifted Differential Equations

Shifted Differential Equations

Definition (SDE) This is an equation: $\sum_{i=0}^{k} P_i(x) f^{(i)}(x) = 0$ for some polynomials $P_i \in \mathbb{K}[X]$ with deg $P_i \leq i + I$. k is called the *order* and I is called the *shift*.

Proposition

If $f \in \mathbb{K}[X]$ doesn't satisfy any SDE of order k and shift l then $\langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k}$ is of full dimension , i.e.,

dim
$$\left\langle x^{\leq i+l} \cdot f^{(i)} \right\rangle_{i \leq k} = \sum_{i=0}^{k} (l+i+1) = (k+1)l + k(k+1)/2.$$

The key lemma

_ Lemm<u>a</u>

Let
$$f(x) = \sum_{i=1}^{m} (x - a_i)^d$$
 where the a_i 's are distinct and $m \le d$.
If f satisfies a SDE of order k and shift l then:
i) $k \ge m$, or
ii) $l > \frac{d}{m} - \frac{3m}{2}$

The key lemma

Lemma

Let
$$f(x) = \sum_{i=1}^{m} (x - a_i)^d$$
 where the a_i 's are distinct and $m \le d$.
If f satisfies a SDE of order k and shift l then:
i) $k \ge m$, or
ii) $l > \frac{d}{m} - 3m/2$

Proof.

• Transform the SDE into a relation of the form:

$$-Q_1(x)(x-a_1)^{d-k} = \sum_{i=2}^m Q_i(x)(x-a_i)^{d-k}$$

It is nontrivial if k < m.

The key lemma

Lemma

Let
$$f(x) = \sum_{i=1}^{m} (x - a_i)^d$$
 where the a_i 's are distinct and $m \le d$.
If f satisfies a SDE of order k and shift l then:
i) $k \ge m$, or
ii) $l > \frac{d}{m} - 3m/2$

Proof.

• Transform the SDE into a relation of the form:

$$-Q_1(x)(x-a_1)^{d-k} = \sum_{i=2}^m Q_i(x)(x-a_i)^{d-k}$$

It is nontrivial if k < m.

• Use the Wronskian (again!) to obtain:

$$d-k \le m-2+(m-1)(l+k)+\binom{m-1}{2}$$

Theorem

For any
$$d, t \ge 2$$
 such that $t < \frac{d}{4}$, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$
with distinct a_i 's and $m = \left\lfloor \sqrt{\frac{d}{t}} \right\rfloor$ is hard:
If $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with each Q_i of degree $\le t$ then $s = \Omega\left(\sqrt{\frac{d}{t}}\right)$.

Theorem

For any
$$d, t \ge 2$$
 such that $t < \frac{d}{4}$, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$
with distinct a_i 's and $m = \left\lfloor \sqrt{\frac{d}{t}} \right\rfloor$ is hard:
If $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with each Q_i of degree $\le t$ then $s = \Omega\left(\sqrt{\frac{d}{t}}\right)$.

• Pick
$$k = m - 1$$
 and $l = (d/m) - 3m/2$: $\langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k}$ is full.

Theorem

For any
$$d, t \ge 2$$
 such that $t < \frac{d}{4}$, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$
with distinct a_i 's and $m = \left\lfloor \sqrt{\frac{d}{t}} \right\rfloor$ is hard:
If $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with each Q_i of degree $\le t$ then $s = \Omega\left(\sqrt{\frac{d}{t}}\right)$.

• Pick
$$k = m - 1$$
 and $l = (d/m) - 3m/2$: $\langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k}$ is full.

• Hence dim
$$\langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k} = (k+1)l + k(k+1)/2 = \Omega(d).$$

Theore<u>m</u>

For any
$$d, t \ge 2$$
 such that $t < \frac{d}{4}$, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$
with distinct a_i 's and $m = \left\lfloor \sqrt{\frac{d}{t}} \right\rfloor$ is hard:
If $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with each Q_i of degree $\le t$ then $s = \Omega\left(\sqrt{\frac{d}{t}}\right)$.

• Pick
$$k = m - 1$$
 and $l = (d/m) - 3m/2$: $\langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k}$ is full.

- Hence dim $\langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k} = (k+1)l + k(k+1)/2 = \Omega(d).$
- Upper bound for sums of powers: $\dim \left\langle x^{\leq i+l} \cdot f^{(i)} \right\rangle_{i \leq k} \leq s \cdot (l+kt+1).$

Theore<u>m</u>

For any
$$d, t \ge 2$$
 such that $t < \frac{d}{4}$, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$
with distinct a_i 's and $m = \left\lfloor \sqrt{\frac{d}{t}} \right\rfloor$ is hard:
If $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with each Q_i of degree $\le t$ then $s = \Omega\left(\sqrt{\frac{d}{t}}\right)$.

• Pick
$$k = m - 1$$
 and $l = (d/m) - 3m/2$: $\langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k}$ is full.

- Hence dim $\langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k} = (k+1)l + k(k+1)/2 = \Omega(d).$
- Upper bound for sums of powers: $\dim \left\langle x^{\leq i+l} \cdot f^{(i)} \right\rangle_{i \leq k} \leq s \cdot (l+kt+1).$

• This gives
$$s = \Omega\left(\frac{d}{l+kt+1}\right)$$

• Recall we wish to find f hard to write as:

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i}$$

• Recall we wish to find *f* hard to write as:

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i}$$

• For **any** *f* of degree *d*, shifted derivatives cannot give a better bound than:

$$s = \Omega\left(\sqrt{\frac{d}{t}}\right)$$

• Recall we wish to find *f* hard to write as:

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i}$$

• For **any** *f* of degree *d*, shifted derivatives cannot give a better bound than:

$$s = \Omega\left(\sqrt{rac{d}{t}}
ight)$$

• Can the Wronskian do better?

• Recall we wish to find *f* hard to write as:

$$f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i}$$

• For **any** *f* of degree *d*, shifted derivatives cannot give a better bound than:

$$s = \Omega\left(\sqrt{rac{d}{t}}
ight)$$

- Can the Wronskian do better?
- When are the $(x a_i)^{e_i}$ linearly independent?

A natural first step?

We are looking for an f which does not belong to any subspace of the form:

 $\mathsf{Span}(Q_1^{e_1},\ldots,Q_s^{e_s}).$

First step: find *s*-dimensional subspace of $\mathbb{K}_d[X]$ which is not of the form

 $\operatorname{Span}(Q_1^{e_1},\ldots,Q_s^{e_s}).$