Depth reduction in arithmetic circuits

Ramprasad Saptharishi
Tel Aviv University
WACT
March 2015, Saarbrücken

Polynomials

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & 1+x_{1}+x_{2}+x_{3}+x_{4} \\
& +x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4} \\
& +x_{2} x_{3} x_{4}+x_{1} x_{3} x_{4}+x_{1} x_{2} x_{4}+x_{1} x_{2} x_{3} \\
& +x_{1} x_{2} x_{3} x_{4}
\end{aligned}
$$

Polynomials

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & 1+x_{1}+x_{2}+x_{3}+x_{4} \\
& +x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4} \\
& +x_{2} x_{3} x_{4}+x_{1} x_{3} x_{4}+x_{1} x_{2} x_{4}+x_{1} x_{2} x_{3} \\
& +x_{1} x_{2} x_{3} x_{4} \\
= & \left(1+x_{1}\right)\left(1+x_{2}\right)\left(1+x_{3}\right)\left(1+x_{4}\right)
\end{aligned}
$$

"How hard is it to compute a given n-variate degree d polynomial?"

- Tree
- Leaves containing variables or constants

Arithmetic Circuits

Arithmetic Branching Programs

A directed layered graph with a unique source node s and sink node t. Each edge e holds a linear polynomial ℓ_{e}.

Arithmetic Branching Programs

A directed layered graph with a unique source node s and sink node t. Each edge e holds a linear polynomial ℓ_{e}.

$$
\mathrm{wt}(P)=\prod_{e \in P} \ell_{e}
$$

Arithmetic Branching Programs

A directed layered graph with a unique source node s and sink node t. Each edge e holds a linear polynomial ℓ_{e}.

$$
\text { Computes } f=\sum_{P: s \rightsquigarrow \rightarrow t} \mathrm{wt}(P)
$$

Arithmetic Branching Programs

A directed layered graph with a unique source node s and sink node t. Each edge e holds a linear polynomial ℓ_{e}.

$$
\text { Computes } f=\sum_{P: s \leadsto \rightarrow t} \mathrm{wt}(P)
$$

Equivalent to iterated matrix product

Relationship between these classes

Formulas $\subseteq \mathrm{ABP}$

Relationship between these classes

Formulas $\subseteq \mathrm{ABP}$
$f g+h:$

Relationship between these classes

Formulas $\subseteq A B P \subseteq$ Circuits

Relationship between these classes

Formulas $\subseteq A B P \subseteq$ Circuits

Relationship between these classes

Formulas $\subseteq A B P \subseteq$ Circuits

Savitch

Homogenization

"Thou shalt not compute polynomials of larger degree than thou needst"

Homogenization

"Thou shalt not compute polynomials of larger degree than thou needst"

- All gates compute homogeneous polynomials.

Homogenization

"Thou shalt not compute polynomials of larger degree than thou needst"

- All gates compute homogeneous polynomials.
- Hence, no gate can compute polynomials of degree larger than output.

Homogenization

"Thou shalt not compute polynomials of larger degree than thou needst"

- All gates compute homogeneous polynomials.
- Hence, no gate can compute polynomials of degree larger than output.
- For circuits and ABPs , homogeneity can be assumed without loss of generality.

Homogenization

"Thou shalt not compute polynomials of larger degree than thou needst"

- All gates compute homogeneous polynomials.
- Hence, no gate can compute polynomials of degree larger than output.
- For circuits and ABPs , homogeneity can be assumed without loss of generality. For formulas, probably not.

Homogenization

"Thou shalt not compute polynomials of larger degree than thou needst"

- All gates compute homogeneous polynomials.
- Hence, no gate can compute polynomials of degree larger than output.
- For circuits and ABPs , homogeneity can be assumed without loss of generality. For formulas, probably not.For constant depth formulas, certainly not.

Homogenization

"Thou shalt not compute polynomials of larger degree than thou needst"

- All gates compute homogeneous polynomials.
- Hence, no gate can compute polynomials of degree larger than output.
- For circuits and ABPs , homogeneity can be assumed without loss of generality. For formulas, probably not.For constant depth formulas, certainly not.

$$
\begin{aligned}
& g=g_{1}+g_{2} \quad \longrightarrow \quad g^{(i)}=g_{1}^{(i)}+g_{2}^{(i)} \\
& g=g_{1} \times g_{2} \quad \longrightarrow \quad g^{(i)}=\sum_{j=0}^{i} g_{1}^{(j)} \times g_{2}^{(i-j)}
\end{aligned}
$$

The illustrious siblings

$$
\begin{aligned}
\operatorname{Det}_{n}\left(x_{11}, \ldots, x_{n n}\right) & =\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \cdot x_{1 \sigma(1)} \ldots x_{n \sigma(n)} \\
\operatorname{Perm}_{n}\left(x_{11}, \ldots, x_{n n}\right) & =\sum_{\sigma \in S_{n}} \quad x_{1 \sigma(1)} \ldots x_{n \sigma(n)}
\end{aligned}
$$

The illustrious siblings

$$
\begin{aligned}
\operatorname{Det}_{n}\left(x_{11}, \ldots, x_{n n}\right) & =\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \cdot x_{1 \sigma(1)} \ldots x_{n \sigma(n)} \\
\operatorname{Perm}_{n}\left(x_{11}, \ldots, x_{n n}\right) & =\sum_{\sigma \in S_{n}} \quad x_{1 \sigma(1)} \ldots x_{n \sigma(n)}
\end{aligned}
$$

Det $_{n}$		VP
vs	$\stackrel{\text { Valiant-79] }}{ }$	vs Perm $_{n}$
		VNP

Why?

Err...

Why?

Err...

- We would obtain new algorithms for polynomial identity testing.
- Identity testing has relevence to primality, results such as IP $=$ PSPACE, bipartite
 matching etc. :-|

Why?

Err...

- We would obtain new algorithms for polynomial identity testing.
- Identity testing has relevence to primality, results such as IP $=$ PSPACE, bipartite
 matching etc. :-|

General roadmap for lower bounds

> Four steps in most lower bound proofs

Step 1: Finding the right building blocks

Four steps in most lower bound proofs

Step 1: Finding the right building blocks

Meta Theorem 1
Every small circuit can be equivalently computed as a sum of few \triangle s

Four steps in most lower bound proofs

Step 1: Finding the right building blocks
Meta Theorem 1
Every small circuit can be equivalently computed as a sum of few Δ s

Four steps in most lower bound proofs

Step 1: Finding the right building blocks

Meta Theorem 1
Every small circuit can be equivalently computed as a sum of few \triangle s
Step 2: Constructing a complexity measure
Meta Theorem 2
Find a map $\Gamma: \mathbb{F}[\mathbf{x}] \rightarrow \mathbb{Z}_{\geq 0}$ such that $\Gamma(\triangle)$ is small.

Four steps in most lower bound proofs

Step 1: Finding the right building blocks

Meta Theorem 1

Every small circuit can be equivalently computed as a sum of few \triangle s
Step 2: Constructing a complexity measure
Meta Theorem 2
Find a map $\Gamma: \mathbb{F}[\mathbf{x}] \rightarrow \mathbb{Z}_{\geq 0}$ such that $\Gamma(\triangle)$ is small.
Step 3: Heuristic estimate for a random polynomial

Meta Theorem 2

Convince yourself that $\Gamma(R)$ must be LARGE for a random polynomial R.

Four steps in most lower bound proofs

Step 1: Finding the right building blocks

Meta Theorem 1

Every small circuit can be equivalently computed as a sum of few \triangle s
Step 2: Constructing a complexity measure
Meta Theorem 2
Find a map $\Gamma: \mathbb{F}[\mathbf{x}] \rightarrow \mathbb{Z}_{\geq 0}$ such that $\Gamma(\triangle)$ is small.
Step 3: Heuristic estimate for a random polynomial

Meta Theorem 2

Convince yourself that $\Gamma(R)$ must be LARGE for a random polynomial R.

Step 4: Find a hay in the haystack

Four steps in most lower bound proofs

Step 1: Finding the right building blocks

Meta Theorem 1
Every small circuit can be equivalently computed as a sum of few \triangle s

Four steps in most lower bound proofs

Step 1: Finding the right building blocks

Meta Theorem 1

Every small circuit can be equivalently computed as a sum of few \triangle s

> Depth reduction

A short history of depth reduction

Circuit Class	Depth	Size
Formulas	$O(\log s)$	$\operatorname{poly}(s)$

A short history of depth reduction

Circuit Class	Depth	Size
Formulas	$O(\log s)$	$\operatorname{poly}(s)$
Circuits	$O(\log d)$	$s^{\log s}$

[Brent]
[Hyafil]

A short history of depth reduction

Circuit Class	Depth	Size	
Formulas	$O(\log s)$	poly (s)	
Circuits	$O(\log d)$	$s^{\log s}$	
Circuits	$O(\log d)$	poly (s)	[Valiant-Skyum-Berkowitz-Rackoff] $]$

A short history of depth reduction

Circuit Class	Depth	Size	
Formulas	$O(\log s)$	poly (s)	[Brent]
Circuits	$O(\log d)$	$s^{\log s}$	[Hyafil]
Circuits	$O(\log d)$	poly (s)	[Valiant-Skyum-Berkowitz-Rackoff]
Circuits	4	$2^{o(n)}$	[Agrawal-Vinay]

A short history of depth reduction

Circuit Class	Depth	Size	
Formulas	$O(\log s)$	$\operatorname{poly}(s)$	[Brent]
Circuits	$O(\log d)$	$s^{\log s}$	
Circuits	$O(\log d)$	poly (s)	[Valiant-Skyum-Berkowitz-Rackoff]
Circuits	4	$2^{2(n)}$	
$s^{(n(\sqrt{d} \log d)}$	[Agrawal-Vinay]		

A short history of depth reduction

Circuit Class	Depth	Size	
Formulas	$O(\log s)$	poly (s)	[Brent]
Circuits	$O(\log d)$	$s^{\log s}$	[Hyafil]
Circuits	$O(\log d)$	poly (s)	[Valiant-Skyum-Berkowitz-Rackoff]
Circuits	4	$20(n)$	[Agrawal-Vinay]
		$s \mathrm{O}(\sqrt{d} \mathrm{log} d)$	[Koiran]
		$s^{O(\sqrt{d})}$	[Tavenas]

A short history of depth reduction

Circuit Class	Depth	Size	
Formulas	$O(\log s)$	poly(s)	[Brent]
Circuits	$O(\log d)$	$s^{\log s}$	[Hyafil]
Circuits	$O(\log d)$	poly(s)	[Valiant-Skyum-Berkowitz-Rackoff]
Circuits	4	2 2(n)	[Agrawal-Vinay]
		$5 \mathrm{O}(\sqrt{\text { dog }}$ d)	[Koiran]
		$s^{O(\sqrt{d})}$	[Tavenas]
Circuits	3^{*}	$s^{O(\sqrt{d})}$	[Gupta-Kamath-Kayal-S]

Other depth reductions in lower bounds

Multilinear formulas

$$
f=\sum_{i=1}^{s} g_{i 1} \cdot g_{i 2} \cdots g_{i \ell}, \quad(1 / 3)^{j} \cdot n \leq \operatorname{Var}\left(g_{i j}\right) \leq(2 / 3)^{j} \cdot n
$$

Other depth reductions in lower bounds

Multilinear formulas
[Raz, Raz-Yehudayoff]

$$
f=\sum_{i=1}^{s} g_{i 1} \cdot g_{i 2} \ldots g_{i \ell} \quad, \quad(1 / 3)^{j} \cdot n \leq \operatorname{Var}\left(g_{i j}\right) \leq(2 / 3)^{j} \cdot n
$$

Homogeneous formulas

$$
f=\sum_{i=1}^{s} g_{i 1} \cdot g_{i 2} \ldots g_{i \ell} \quad, \quad(1 / 3)^{j} \cdot d \leq \operatorname{deg}\left(g_{i j}\right) \leq(2 / 3)^{j} \cdot d
$$

Other depth reductions in lower bounds

Multilinear formulas
[Raz, Raz-Yehudayoff]

$$
f=\sum_{i=1}^{s} g_{i 1} \cdot g_{i 2} \ldots g_{i \ell} \quad, \quad(1 / 3)^{j} \cdot n \leq \operatorname{Var}\left(g_{i j}\right) \leq(2 / 3)^{j} \cdot n
$$

Homogeneous formulas
$f=\sum_{i=1}^{s} g_{i 1} \cdot g_{i 2} \ldots g_{i \ell}, \quad(1 / 3)^{j} \cdot d \leq \operatorname{deg}\left(g_{i j}\right) \leq(2 / 3)^{j} \cdot d$
Homogeneous $\Sigma \Pi \Sigma \Pi$
[Kayal-Limaye-Saha-Srinivasan]

$$
f=\Sigma \Pi \Sigma \Pi^{[\sqrt{d}]}+\sum_{i=1}^{s} m_{i} Q_{i} \quad, \quad \operatorname{deg}\left(m_{i}\right) \geq \sqrt{d}
$$

Plan

- Classical depth reductions of [Brent] and [VSBR].
- A slightly different proof of [Tavenas]
- Better building blocks for homogeneous formulas
- (depending on time) Reduction to depth three [GKKS2]

Depth reducing formulas

Depth reducing formulas

Depth reducing formulas

Depth reducing formulas

$$
\begin{array}{ll}
\Phi_{1}(z) & =A \cdot z+B \\
\Phi & =A \cdot \Phi_{2}+B
\end{array}
$$

Depth reducing formulas

Φ_{2}

$$
\begin{aligned}
& \Phi_{1}(z)=A \cdot z+B \\
& \Phi=A \cdot \Phi_{2}+B=\left(\Phi_{1}(1)-\Phi_{1}(0)\right) \cdot \Phi_{2}+\Phi_{1}(0)
\end{aligned}
$$

Depth reducing formulas

$$
\begin{aligned}
& \Phi_{1}(z)=A \cdot z+B \\
& \Phi=A \cdot \Phi_{2}+B=\left(\Phi_{1}(1)-\Phi_{1}(0)\right) \cdot \Phi_{2}+\Phi_{1}(0)
\end{aligned}
$$

Depth reducing formulas

$\operatorname{Size}(s) \leq 4 \cdot \operatorname{Size}(2 s / 3)+O(1)$
$\operatorname{Depth}(s) \leq \operatorname{Depth}(2 s / 3)+O(1)$

Depth reducing formulas

$\operatorname{Size}(s) \leq 4 \cdot \operatorname{Size}(2 s / 3)+O(1) \Longrightarrow \operatorname{poly}(s)$ $\operatorname{Depth}(s) \leq \operatorname{Depth}(2 s / 3)+O(1)$

Depth reducing formulas

$\operatorname{Size}(s) \leq 4 \cdot \operatorname{Size}(2 s / 3)+O(1) \Longrightarrow \operatorname{poly}(s)$ $\operatorname{Depth}(s) \leq \operatorname{Depth}(2 s / 3)+O(1) \Longrightarrow O(\log s)$

Depth reducing formulas

$\operatorname{Size}(s) \leq 4 \cdot \operatorname{Size}(2 s / 3)+O(1) \Longrightarrow \operatorname{poly}(s)$ $\operatorname{Depth}(s) \leq \operatorname{Depth}(2 s / 3)+O(1) \Longrightarrow O(\log s)$

Adapting to circuits

Adapting to circuits: Attempt 1

Adapting to circuits: Attempt 1

Degree $\leq d / 3$

$$
\mathscr{F}=\left\{v \in \Phi: \frac{d}{3}<\operatorname{deg}(v) \leq \frac{2 d}{3}\right\}
$$

Adapting to circuits: Attempt 1

Degree $\leq d / 3$

$$
\begin{gathered}
\mathscr{F}=\left\{v \in \Phi: \frac{d}{3}<\operatorname{deg}(v) \leq \frac{2 d}{3}\right\} \\
\Phi=\sum_{v_{i} \in \mathscr{F}} A_{i} \Phi_{v_{i}}+\sum_{v_{i}, v_{j} \in \mathscr{F}} A_{i, j} \Phi_{v_{i}} \Phi_{v_{j}}
\end{gathered}
$$

Adapting to circuits: Attempt 1

Degree $\leq d / 3$

$$
\begin{gathered}
\mathscr{F}=\left\{v \in \Phi: \frac{d}{3}<\operatorname{deg}(v) \leq \frac{2 d}{3}\right\} \\
\Phi=\sum_{v_{i} \in \mathscr{F}} A_{i} \Phi_{v_{i}}+\sum_{v_{i}, v_{j} \in \mathscr{F}} A_{i, j} \Phi_{v_{i}} \Phi_{v_{j}}
\end{gathered}
$$

each have degree at most $2 d / 3$

Adapting to circuits: Attempt 1

Degree $\leq d / 3$

$$
\begin{gathered}
\mathscr{F}=\left\{v \in \Phi: \frac{d}{3}<\operatorname{deg}(v) \leq \frac{2 d}{3}\right\} \\
\Phi=\sum_{v_{i} \in \mathscr{F}} A_{i} \Phi_{v_{i}}+\sum_{v_{i}, v_{j} \in \mathscr{F}} A_{i, j} \Phi_{v_{i}} \Phi_{v_{j}}
\end{gathered}
$$

each have degree at most $2 d / 3$
Interpolate!

Adapting to circuits: Attempt 1

Degree $\leq d / 3$

$$
\begin{gathered}
\mathscr{F}=\left\{v \in \Phi: \frac{d}{3}<\operatorname{deg}(v) \leq \frac{2 d}{3}\right\} \\
\Phi=\sum_{v_{i} \in \mathscr{F}} A_{i} \Phi_{v_{i}}+\sum_{v_{i}, v_{j} \in \mathscr{F}} A_{i, j} \Phi_{v_{i}} \Phi_{v_{j}}
\end{gathered}
$$

$\operatorname{Depth}(d)=\operatorname{Depth}(2 d / 3)+O(1)$

Adapting to circuits: Attempt 1

Degree $\leq d / 3$

$$
\begin{gathered}
\mathscr{F}=\left\{v \in \Phi: \frac{d}{3}<\operatorname{deg}(v) \leq \frac{2 d}{3}\right\} \\
\Phi=\sum_{v_{i} \in \mathscr{F}} A_{i} \Phi_{v_{i}}+\sum_{v_{i}, v_{j} \in \mathscr{F}} A_{i, j} \Phi_{v_{i}} \Phi_{v_{j}} \\
\operatorname{Depth}(d)=O(\log d)
\end{gathered}
$$

Adapting to circuits: Attempt 1

Degree $\leq d / 3$

$$
\begin{gathered}
\mathscr{F}=\left\{v \in \Phi: \frac{d}{3}<\operatorname{deg}(v) \leq \frac{2 d}{3}\right\} \\
\Phi=\sum_{v_{i} \in \mathscr{F}} A_{i} \Phi_{v_{i}}+\sum_{v_{i}, v_{j} \in \mathscr{F}} A_{i, j} \Phi_{v_{i}} \Phi_{v_{j}}
\end{gathered}
$$

$$
\operatorname{Depth}(d)=O(\log d)
$$

$$
\operatorname{Size}(s, d)=\text { ? }
$$

Adapting to circuits: Attempt 1

Degree $\leq d / 3$

$$
\begin{gathered}
\mathscr{F}=\left\{v \in \Phi: \frac{d}{3}<\operatorname{deg}(v) \leq \frac{2 d}{3}\right\} \\
\Phi=\sum_{v_{i} \in \mathscr{F}} A_{i} \Phi_{v_{i}}+\sum_{v_{i}, v_{j} \in \mathscr{F}} A_{i, j} \Phi_{v_{i}} \Phi_{v_{j}}
\end{gathered}
$$

$$
\operatorname{Depth}(d)=O(\log d)
$$

$$
\operatorname{Size}(s, d)=s^{O(\log d)}
$$

Adapting to circuits: [Hyafil]

Degree $\leq d / 3$

$$
\begin{gathered}
\mathscr{F}=\left\{v \in \Phi: \frac{d}{3}<\operatorname{deg}(v) \leq \frac{2 d}{3}\right\} \\
\Phi=\sum_{v_{i} \in \mathscr{F}} A_{i} \Phi_{v_{i}}+\sum_{v_{i}, v_{j} \in \mathscr{F}} A_{i, j} \Phi_{v_{i}} \Phi_{v_{j}}
\end{gathered}
$$

$$
\operatorname{Depth}(d)=O(\log d)
$$

$$
\operatorname{Size}(s, d)=s^{O(\log d)}
$$

Adapting to circuits: Attempt 2

- Want an analogue of $\Phi=A \cdot \Phi_{v}+B$.

Adapting to circuits: Attempt 2

- Want an analogue of $\Phi=A \cdot \Phi_{v}+B$.
- Problem is that there are multiple paths to v.

Adapting to circuits: Attempt 2

- Want an analogue of $\Phi=A \cdot \Phi_{v}+B$.
- Problem is that there are multiple paths to v. Φ isn't really a linear function in Φ_{v}.

Adapting to circuits: Attempt 2

- Want an analogue of $\Phi=A \cdot \Phi_{v}+B$.
- Problem is that there are multiple paths to v. Φ isn't really a linear function in Φ_{v}.
[VSBR]: Do not look at all paths. Only take a canonical path, like say taking the right-edge out of every \times-gate.

Adapting to circuits: Attempt 2

- Want an analogue of $\Phi=A \cdot \Phi_{v}+B$.
- Problem is that there are multiple paths to v. Φ isn't really a linear function in Φ_{v}.
[VSBR]: Do not look at all paths. Only take a canonical path, like say taking the right-edge out of every \times-gate. More like "suffixes"

Adapting to circuits: Attempt 2

- Want an analogue of $\Phi=A \cdot \Phi_{v}+B$.
- Problem is that there are multiple paths to v. Φ isn't really a linear function in Φ_{v}.
[VSBR]: Do not look at all paths. Only take a canonical path, like say taking the right-edge out of every \times-gate. More like "suffixes"

$$
[u: v]= \begin{cases}0 & \text { if } u \text { is a leaf } \\ 1 & \text { if } u=v \\ {\left[u_{1}: v\right]+\left[u_{2}: v\right]} & \text { if } u=u_{1}+u_{2} \\ {\left[u_{1}\right] \cdot\left[u_{2}: v\right]} & \text { if } u_{1}=u_{1} \times u_{2}\end{cases}
$$

Adapting to circuits: Attempt 2

- Want an analogue of $\Phi=A \cdot \Phi_{v}+B$.
- Problem is that there are multiple paths to v. Φ isn't really a linear function in Φ_{v}.
[VSBR]: Do not look at all paths. Only take a canonical path, like say taking the right-edge out of every \times-gate. More like "suffixes"

$$
[u: v]= \begin{cases}0 & \text { if } u \text { is a leaf } \\ 1 & \text { if } u=v \\ {\left[u_{1}: v\right]+\left[u_{2}: v\right]} & \text { if } u=u_{1}+u_{2} \\ {\left[u_{1}\right] \cdot\left[u_{2}: v\right]} & \text { if } u_{1}=u_{1} \times u_{2}\end{cases}
$$

Another possibility: Partial Derivatives.

Adapting to circuits: Attempt 2

- Want an analogue of $\Phi=A \cdot \Phi_{v}+B$.
- Problem is that there are multiple paths to v. Φ isn't really a linear function in Φ_{v}.
[VSBR]: Do not look at all paths. Only take a canonical path, like say taking the right-edge out of every \times-gate. More like "suffixes"

$$
[u: v]= \begin{cases}0 & \text { if } u \text { is a leaf } \\ 1 & \text { if } u=v \\ {\left[u_{1}: v\right]+\left[u_{2}: v\right]} & \text { if } u=u_{1}+u_{2} \\ {\left[u_{1}\right] \cdot\left[u_{2}: v\right]} & \text { if } u_{1}=u_{1} \times u_{2}\end{cases}
$$

Another possibility: Partial Derivatives.
Works, but one needs to be a little careful with multiple paths. See [Shpilka-Yehudayoff]

An example

An example

$$
\begin{aligned}
& {\left[v_{1}: v_{8}\right]=\left[v_{2}: v_{8}\right] \quad+\left[v_{3}: v_{8}\right] } \\
&= {\left[v_{4}\right] \cdot\left[v_{5}: v_{8}\right] } \\
&=\left(x_{1} x_{2}+x_{2} x_{3}\right) \cdot\left[v_{5}: v_{8}\right] \\
&=\left(x_{1} x_{2}+x_{2} x_{3}\right) \cdot\left(\left[v_{8}: v_{8}\right]+\left[v_{9}: v_{8}\right]\right)
\end{aligned}
$$

An example

$$
\begin{aligned}
& {\left[v_{1}: v_{8}\right]=\left[v_{2}: v_{8}\right] \quad+\left[v_{3}: v_{8}\right] } \\
&= {\left[v_{4}\right] \cdot\left[v_{5}: v_{8}\right] } \\
&=\left(x_{1} x_{2}+x_{2} x_{3}\right) \cdot\left[v_{5}: v_{8}\right] \\
&=\left(x_{1} x_{2}+x_{2} x_{3}\right) \cdot\left(\left[v_{8}: v_{8}\right]+\left[v_{9}: v_{8}\right]\right)
\end{aligned}
$$

An example

$$
\begin{aligned}
{\left[v_{1}: v_{8}\right] } & =\left[v_{2}: v_{8}\right]+\left[v_{3}: v_{8}\right] \\
& =\left[v_{4}\right] \cdot\left[v_{5}: v_{8}\right] \\
& =\left(x_{1} x_{2}+x_{2} x_{3}\right) \cdot\left[v_{5}: v_{8}\right] \\
& =\left(x_{1} x_{2}+x_{2} x_{3}\right) \cdot\left(\left[v_{8}: v_{8}\right]+\left[v_{9}: v_{8}\right]\right) \\
& =\left(x_{1} x_{2}+x_{2} x_{3}\right)
\end{aligned}
$$

[VSBR] continued ...

We want a set of nodes \mathscr{F} such that

$$
[u]=\sum_{v \in \mathscr{F}}[u: v] \cdot[v]
$$

What are candidates for \mathscr{F} ?

[VSBR] continued ...

We want a set of nodes \mathscr{F} such that

$$
[u]=\sum_{v \in \mathscr{F}}[u: v] \cdot[v]
$$

What are candidates for \mathscr{F} ?

[VSBR] continued ...

We want a set of nodes \mathscr{F} such that

$$
[u]=\sum_{v \in \mathscr{F}}[u: v] \cdot[v]
$$

What are candidates for \mathscr{F} ? Every "right-path" must pass through exactly one $v \in \mathscr{F}$

[VSBR] continued ...

We want a set of nodes \mathscr{F} such that

$$
[u]=\sum_{v \in \mathscr{F}}[u: v] \cdot[v]
$$

What are candidates for \mathscr{F} ? Every "right-path" must pass through exactly one $v \in \mathscr{F}$

$$
\mathscr{F}_{a}=\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\}
$$

[VSBR] continued ...

We want a set of nodes \mathscr{F} such that

$$
[u]=\sum_{v \in \mathscr{F}}[u: v] \cdot[v]
$$

What are candidates for \mathscr{F} ? Every "right-path" must pass through exactly one $v \in \mathscr{F}$

$$
\mathscr{F}_{a}=\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\}
$$

[VSBR] continued ...

We want a set of nodes \mathscr{F} such that

$$
[u]=\sum_{v \in \mathscr{F}}[u: v] \cdot[v]
$$

What are candidates for \mathscr{F} ? Every "right-path" must pass through exactly one $v \in \mathscr{F}$

$$
\mathscr{F}_{a}=\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\}
$$

Make the circuit right heavy.

[VSBR] continued ...

We want a set of nodes \mathscr{F} such that

$$
[u]=\sum_{v \in \mathscr{F}}[u: v] \cdot[v]
$$

What are candidates for \mathscr{F} ? Every "right-path" must pass through exactly one $v \in \mathscr{F}$

$$
\mathscr{F}_{a}=\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\}
$$

Lemma

$$
[u]=\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot[v]
$$

[VSBR] continued ...

We want a set of nodes \mathscr{F} such that

$$
[u]=\sum_{v \in \mathscr{F}}[u: v] \cdot[v]
$$

What are candidates for \mathscr{F} ? Every "right-path" must pass through exactly one $v \in \mathscr{F}$

$$
\mathscr{F}_{a}=\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\}
$$

Lemma

$$
\begin{aligned}
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot[v] \\
{[u: w] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot[v: w]
\end{aligned}
$$

[VSBR] continued ...

$$
\begin{aligned}
\mathscr{F}_{a} & =\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\} \\
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot[v]
\end{aligned}
$$

[VSBR] continued ...

$$
\begin{aligned}
\mathscr{F}_{a} & =\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\} \\
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right]
\end{aligned}
$$

[VSBR] continued ...

$$
\begin{aligned}
& \mathscr{F}_{a}=\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\} \\
& {[u]=\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right] \quad a=\operatorname{deg}(u) / 2}
\end{aligned}
$$

[VSBR] continued ...

$$
\begin{aligned}
& \mathscr{F}_{a}=\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\} \\
& {[u]=\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right] \quad a=\operatorname{deg}(u) / 2}
\end{aligned}
$$

[VSBR] continued ...

$$
\begin{aligned}
\mathscr{F}_{a} & =\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\} \\
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right] \quad a=\operatorname{deg}(u) / 2
\end{aligned}
$$

[VSBR] continued ...

$$
\begin{aligned}
\mathscr{F}_{a} & =\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\} \\
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right] \quad a=\operatorname{deg}(u) / 2
\end{aligned}
$$

[VSBR] continued...

$$
\begin{aligned}
\mathscr{F}_{a} & =\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\} \\
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right] \quad a=\operatorname{deg}(u) / 2 \\
{[u: w] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot[v: w]
\end{aligned}
$$

[VSBR] continued...

$$
\begin{aligned}
\mathscr{F}_{a} & =\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\} \\
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right] \quad a=\operatorname{deg}(u) / 2 \\
{[u: w] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}: w\right]
\end{aligned}
$$

[VSBR] continued ...

$$
\begin{aligned}
\mathscr{F}_{a} & =\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\} \\
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right] \quad a=\operatorname{deg}(u) / 2 \\
{[u: w] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}: w\right] \quad a=\frac{\operatorname{deg}(u)+\operatorname{deg}(w)}{2}
\end{aligned}
$$

[VSBR] continued ...

$$
\begin{aligned}
\mathscr{F}_{a} & =\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\} \\
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right] \quad a=\operatorname{deg}(u) / 2 \\
{[u: w] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}: w\right] \quad a=\frac{\operatorname{deg}(u)+\operatorname{deg}(w)}{2}
\end{aligned}
$$

[VSBR] continued ...

$$
\begin{aligned}
\mathscr{F}_{a} & =\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\} \\
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right] \quad a=\operatorname{deg}(u) / 2 \\
{[u: w] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}: w\right] \quad a=\frac{\operatorname{deg}(u)+\operatorname{deg}(w)}{2}
\end{aligned}
$$

[VSBR] continued...

$$
\begin{aligned}
\mathscr{F}_{a} & =\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\} \\
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right] \quad a=\operatorname{deg}(u) / 2 \\
{[u: w] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}: w\right] \quad a=\frac{\operatorname{deg}(u)+\operatorname{deg}(w)}{2} \\
& =\sum_{a \in \mathscr{F}_{a}}[u: v] \cdot\left(\sum_{q \in \mathscr{F}_{a}}\left[v_{L}: q\right] \cdot\left[q_{L}\right] \cdot\left[q_{R}\right]\right) \cdot\left[v_{R}: w\right]
\end{aligned}
$$

[VSBR] continued...

$$
\begin{aligned}
\mathscr{F}_{a} & =\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\} \\
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right] \quad a=\operatorname{deg}(u) / 2 \\
{[u: w] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}: w\right] \quad a=\frac{\operatorname{deg}(u)+\operatorname{deg}(w)}{2} \\
& =\sum_{a \in \mathscr{F}_{a}}[u: v] \cdot\left(\sum_{q \in \mathscr{F}_{a}}\left[v_{L}: q\right] \cdot\left[q_{L}\right] \cdot\left[q_{R}\right]\right) \cdot\left[v_{R}: w\right]
\end{aligned}
$$

[VSBR] continued...

$$
\begin{aligned}
\mathscr{F}_{a} & =\left\{v: \operatorname{deg}(v) \geq a, \operatorname{deg}\left(v_{L}\right), \operatorname{deg}\left(v_{R}\right)<a\right\} \\
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right] \quad a=\operatorname{deg}(u) / 2 \\
{[u: w] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}: w\right] \quad a=\frac{\operatorname{deg}(u)+\operatorname{deg}(w)}{2} \\
& =\sum_{a \in \mathscr{F}_{a}}[u: v] \cdot\left(\sum_{q \in \mathscr{F}_{a}}\left[v_{L}: q\right] \cdot\left[q_{L}\right] \cdot\left[q_{R}\right]\right) \cdot\left[v_{R}: w\right]
\end{aligned}
$$

$$
\begin{aligned}
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right] \\
{[u: w] } & =\sum_{v \in \mathscr{F}_{a}} \sum_{q \in \mathscr{F}_{a}}[u: v] \cdot[v: q] \cdot\left[q_{L}\right] \cdot\left[q_{R}\right] \cdot\left[v_{R}: w\right]
\end{aligned}
$$

Theorem ([Valiant-Skyum-Berkowitz-Rackoff])

If Φ is a size s circuit computing an n-variate degree d polynomial f, then there is a circuit Φ^{\prime} computing f with the following properties.

- Every gate of Φ^{\prime} computes some $[u: v]$,
- All addition gates have fan-in at most s^{2},
- All multiplication gates have fan-in at most 5 , and
- If v_{1} is a child of a \times-gate v in Φ^{\prime}, then $\operatorname{deg}\left(v_{1}\right) \leq \operatorname{deg}(v) / 2$.

$$
\begin{aligned}
{[u] } & =\sum_{v \in \mathscr{F}_{a}}[u: v] \cdot\left[v_{L}\right] \cdot\left[v_{R}\right] \\
{[u: w] } & =\sum_{v \in \mathscr{F}_{a}} \sum_{q \in \mathscr{F}_{a}}[u: v] \cdot[v: q] \cdot\left[q_{L}\right] \cdot\left[q_{R}\right] \cdot\left[v_{R}: w\right]
\end{aligned}
$$

Theorem ([Valiant-Skyum-Berkowitz-Rackoff])

If Φ is a size s circuit computing an n-variate degree d polynomial f, then there is a circuit Φ^{\prime} computing f with the following properties.

- Every gate of Φ^{\prime} computes some $[u: v]$,
- All addition gates have fan-in at most s^{2},
- All multiplication gates have fan-in at most 5 , and
- If v_{1} is a child of a \times-gate v in Φ^{\prime}, then $\operatorname{deg}\left(v_{1}\right) \leq \operatorname{deg}(v) / 2$. Hence, the depth of Φ^{\prime} is $O(\log d)$.

Reducing to depth four

Reducing to depth four

Reducing to depth four

Reducing to depth four

Degree $\leq \sqrt{d}$
Size $\binom{n+\sqrt{d}}{\sqrt{d}}$ each

Reducing to depth four

Degree $\leq \sqrt{d}$
Size $\binom{n+\sqrt{d}}{\sqrt{d}}$ each

Lemma ([Tavenas13])

$$
\operatorname{deg}\left(\operatorname{Top}\left(z_{1}, \ldots, z_{s}\right)\right) \leq 15 \sqrt{d}
$$

Reducing to depth four

Degree $\leq \sqrt{d}$
Size $\binom{n+\sqrt{d}}{\sqrt{d}}$ each

Lemma ([Tavenas13])

$$
\operatorname{deg}\left(\operatorname{Top}\left(z_{1}, \ldots, z_{s}\right)\right) \leq 15 \sqrt{d}
$$

Reducing to depth four

Theorem

Equivalent depth-4 circuit of size

$$
s\binom{n+\sqrt{d}}{n}+\binom{s+15 \sqrt{d}}{s}=s^{O(\sqrt{d})}
$$

Reducing to depth four

Theorem

Equivalent depth-4 circuit of size

$$
s\binom{n+\sqrt{d}}{n}+\binom{s+15 \sqrt{d}}{s}=s^{O(\sqrt{d})}
$$

Reducing to depth four

Theorem

Equivalent depth-4 circuit with bottom fan-in at most \sqrt{d} of size

$$
s\binom{n+\sqrt{d}}{n}+\binom{s+15 \sqrt{d}}{s}=s^{O(\sqrt{d})}
$$

Reducing to depth four

Theorem

Equivalent $\Sigma \Pi \Sigma \Pi^{[\sqrt{d}]}$ circuit of size

$$
s\binom{n+\sqrt{d}}{n}+\binom{s+15 \sqrt{d}}{s}=s^{O(\sqrt{d})}
$$

A different perspective

Let's start with [VSBR]

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

A different perspective

Let's start with [VSBR]

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

This is a $\Sigma \Pi \Sigma \Pi^{[d / 2]}$ circuit. We want to obtain a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit.

A different perspective

Let's start with [VSBR]

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

This is a $\Sigma \Pi \Sigma \Pi^{[d / 2]}$ circuit. We want to obtain a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit. Each $f_{i j}$ is also some $[u: v]$. Keep expanding terms of degree more than t.

A different perspective

Let's start with [VSBR]

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

This is a $\Sigma \Pi \Sigma \Pi^{[d / 2]}$ circuit. We want to obtain a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit. Each $f_{i j}$ is also some $[u: v]$. Keep expanding terms of degree more than t.

A different perspective

Let's start with [VSBR]

$$
f=\sum_{i=1}^{s}\left(\sum_{j=1}^{s} g_{j 1} \cdots g_{j 5}\right) \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

This is a $\Sigma \Pi \Sigma \Pi^{[d / 2]}$ circuit. We want to obtain a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit. Each $f_{i j}$ is also some $[u: v]$. Keep expanding terms of degree more than t.

A different perspective

Let's start with [VSBR]

$$
f=\sum_{i=1}^{s^{2}} f_{i 1} \cdots f_{i 9}
$$

This is a $\Sigma \Pi \Sigma \Pi^{[d / 2]}$ circuit. We want to obtain a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit. Each $f_{i j}$ is also some $[u: v]$. Keep expanding terms of degree more than t.

A different perspective

Let's start with [VSBR]

$$
f=\sum_{i=1}^{s^{3}} f_{i 1} \cdots f_{i 13}
$$

This is a $\Sigma \Pi \Sigma \Pi^{[d / 2]}$ circuit. We want to obtain a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit. Each $f_{i j}$ is also some $[u: v]$. Keep expanding terms of degree more than t.

A different perspective

Let's start with [VSBR]

$$
f=\sum_{i=1}^{s^{4}} f_{i 1} \cdots f_{i 17}
$$

This is a $\Sigma \Pi \Sigma \Pi^{[d / 2]}$ circuit. We want to obtain a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit. Each $f_{i j}$ is also some $[u: v]$. Keep expanding terms of degree more than t.

A different perspective

Let's start with [VSBR]

$$
f=\sum_{i=1}^{s^{4}} f_{i 1} \cdots f_{i 17}
$$

This is a $\Sigma \Pi \Sigma \Pi^{[d / 2]}$ circuit. We want to obtain a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit. Each $f_{i j}$ is also some $[u: v$]. Keep expanding terms of degree more than t.

How many iterations until all degrees are at most t ?

Number of iterations

$$
g=\sum_{j=1}^{s} g_{j 1} \cdot g_{j 2} \cdot g_{j 3} \cdot g_{j 4} \cdot g_{j 5}
$$

Number of iterations

$$
g=\sum_{j=1}^{s} g_{j 1} \cdot g_{j 2} \cdot g_{j 3} \cdot g_{j 4} \cdot g_{j 5}
$$

Observation

In each summand, at least two terms have degree at least $t / 8$.

Number of iterations

$$
g=\sum_{j=1}^{s} \underbrace{g_{j 1}}_{\geq t / 5} \cdot g_{j 2} \cdot g_{j 3} \cdot g_{j 4} \cdot g_{j 5}
$$

Observation
In each summand, at least two terms have degree at least $t / 8$.

$$
g=\sum_{j=1}^{s} \underbrace{g_{j 1}}_{\geq t / 5} \cdot \underbrace{g_{j 2}}_{\geq t / 8} \cdot g_{j 3} \cdot g_{j 4} \cdot g_{j 5}
$$

Observation
In each summand, at least two terms have degree at least $t / 8$.

$$
g=\sum_{j=1}^{s} \underbrace{g_{j 1}}_{\geq t / 5} \cdot \underbrace{g_{j 2}}_{\geq t / 8} \cdot g_{j 3} \cdot g_{j 4} \cdot g_{j 5}
$$

Observation

In each summand, at least two terms have degree at least $t / 8$.

How many factors of degree at least $t / 8$?

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

$$
g=\sum_{j=1}^{s} \underbrace{g_{j 1}}_{\geq t / 5} \cdot \underbrace{g_{j 2}}_{\geq t / 8} \cdot g_{j 3} \cdot g_{j 4} \cdot g_{j 5}
$$

Observation

In each summand, at least two terms have degree at least $t / 8$.

How many factors of degree at least $t / 8$?

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

Number of iterations

$$
g=\sum_{j=1}^{s} \underbrace{g_{j 1}}_{\geq t / 5} \cdot \underbrace{g_{j 2}}_{\geq t / 8} \cdot g_{j 3} \cdot g_{j 4} \cdot g_{j 5}
$$

Observation

In each summand, at least two terms have degree at least $t / 8$.

How many factors of degree at least $t / 8$?

$$
f=\sum_{i=1}^{s}\left(\sum_{j=1}^{s} g_{j 1} g_{j 2} g_{j 3} g_{j 4} g_{j 5}\right) \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

Number of iterations

$$
g=\sum_{j=1}^{s} \underbrace{g_{j 1}}_{\geq t / 5} \cdot \underbrace{g_{j 2}}_{\geq t / 8} \cdot g_{j 3} \cdot g_{j 4} \cdot g_{j 5}
$$

Observation

In each summand, at least two terms have degree at least $t / 8$.

How many factors of degree at least $t / 8$?

$$
f=\sum_{i=1}^{s}\left(\sum_{j=1}^{s} g_{j 1} g_{j 2} g_{j 3} g_{j 4} g_{j 5}\right) \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

$$
g=\sum_{j=1}^{s} \underbrace{g_{j 1}}_{\geq t / 5} \cdot \underbrace{g_{j 2}}_{\geq t / 8} \cdot g_{j 3} \cdot g_{j 4} \cdot g_{j 5}
$$

Observation

In each summand, at least two terms have degree at least $t / 8$.

How many factors of degree at least $t / 8$?

$$
f=\sum_{i=1}^{s^{2}} f_{i 1} \cdot f_{i 12} \cdot f_{i 3} \cdot f_{i 4} \cdots f_{i 9}
$$

$$
g=\sum_{j=1}^{s} \underbrace{g_{j 1}}_{\geq t / 5} \cdot \underbrace{g_{j 2}}_{\geq t / 8} \cdot g_{j 3} \cdot g_{j 4} \cdot g_{j 5}
$$

Observation

In each summand, at least two terms have degree at least $t / 8$.

How many factors of degree at least $t / 8$? At most $8 d / t$.

$$
f=\sum_{i=1}^{s^{2}} f_{i 1} \cdot f_{i 12} \cdot f_{i 3} \cdot f_{i 4} \cdots f_{i 9}
$$

Number of iterations

$$
g=\sum_{j=1}^{s} \underbrace{g_{j 1}}_{\geq t / 5} \cdot \underbrace{g_{j 2}}_{\geq t / 8} \cdot g_{j 3} \cdot g_{j 4} \cdot g_{j 5}
$$

Observation

In each summand, at least two terms have degree at least $t / 8$.

How many factors of degree at least $t / 8$? At most $8 d / t$.

$$
f=\sum_{i=1}^{s^{2}} f_{i 1} \cdot f_{i 12} \cdot f_{i 3} \cdot f_{i 4} \cdots f_{i 9}
$$

Final $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit has top fan-in at most $s^{O(d / t)}$.

Theorem

Every small circuit can be equivalently computed as a sum of few \triangle s

Theorem
Every circuit of size s can be equivalently computed as a sum of few Δs

Theorem
Every circuit of size s can be equivalently computed as a sum of $s^{O(d / t)}$ Δs

Theorem

Every circuit of size s can be equivalently computed as a sum of $s^{O(d / t)}$ $\Delta \mathrm{s}$, where

$$
\Delta=\prod_{i=1}^{O(d / t)} Q_{i} \quad \operatorname{deg}\left(Q_{i}\right) \leq t
$$

Theorem

Every circuit of size s can be equivalently computed as a sum of $s^{O(d / t)}$ $\Delta \mathrm{s}$, where

$$
\Delta=\prod_{i=1}^{O(d / t)} Q_{i} \quad \operatorname{deg}\left(Q_{i}\right) \leq t
$$

Question
What are the Δ if we start with a homogeneous formula of size s?

Theorem

Every circuit of size s can be equivalently computed as a sum of $s^{O(d / t)}$ $\Delta \mathrm{s}$, where

$$
\Delta=\prod_{i=1}^{O(d / t)} Q_{i} \quad \operatorname{deg}\left(Q_{i}\right) \leq t
$$

Question
What are the $\triangle s$ if we start with a depth 100 formula of size s ?

A better starting point?

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

If we start with a homogeneous formula, can we do better?

A better starting point?

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

If we start with a homogeneous formula, can we do better? [Hrubes-Yehudayoff]: Yes!

Lemma ([Hrubes-Yehudayoff])

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdots f_{i \ell} \quad \text { with }\left(\frac{1}{3}\right)^{j} \cdot d<\operatorname{deg}\left(f_{i j}\right) \leq\left(\frac{2}{3}\right)^{j} \cdot d
$$

A better starting point?

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

If we start with a homogeneous formula, can we do better? [Hrubes-Yehudayoff]: Yes!

Lemma ([Hrubes-Yehudayoff])

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdots f_{i \ell} \quad \text { with }\left(\frac{1}{3}\right)^{j} \cdot d<\operatorname{deg}\left(f_{i j}\right) \leq\left(\frac{2}{3}\right)^{j} \cdot d
$$

Proof

$$
f=A \cdot \Phi_{v}+\Phi_{v=0}
$$

A better starting point?

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

If we start with a homogeneous formula, can we do better? [Hrubes-Yehudayoff]: Yes!

Lemma ([Hrubes-Yehudayoff])

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdots f_{i \ell} \quad \text { with }\left(\frac{1}{3}\right)^{j} \cdot d<\operatorname{deg}\left(f_{i j}\right) \leq\left(\frac{2}{3}\right)^{j} \cdot d
$$

Proof

$$
\begin{aligned}
f & =A \cdot \Phi_{v}+\Phi_{v=0} \\
& =A \cdot\left(\sum_{i=1}^{s_{1}} g_{i 1} \cdots g_{i \ell}\right)+\left(\sum_{j=1}^{s_{2}} h_{j 1} \cdots h_{j \ell}\right)
\end{aligned}
$$

A better starting point?

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

If we start with a homogeneous formula, can we do better?
[Hrubes-Yehudayoff]: Yes!
Lemma ([Hrubes-Yehudayoff])

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdots f_{i \ell} \quad \text { with }\left(\frac{1}{3}\right)^{j} \cdot d<\operatorname{deg}\left(f_{i j}\right) \leq\left(\frac{2}{3}\right)^{j} \cdot d
$$

Proof

$$
f=\sum_{i=1}^{s} f_{i 1} \cdots f_{i \ell}
$$

Reduction to depth four, again

$$
f=\sum_{i=1}^{s} f_{i} \cdots f_{i e}
$$

Reduction to depth four, again

$$
f=\sum_{i=1}^{s} f_{i 1} \cdots f_{i \ell}
$$

Fact: Each $f_{i j}$ is also computable by size s homogeneous formulas

Reduction to depth four, again

$$
f=\sum_{i=1}^{s} f_{i 1} \cdots f_{i \ell}
$$

Fact: Each $f_{i j}$ is also computable by size s homogeneous formulas

- The above expression is a $\Sigma \Pi \Sigma \Pi^{[2 d / 3]}$ circuit. We want a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit.

Reduction to depth four, again

$$
f=\sum_{i=1}^{s} f_{i 1} \cdots f_{i \ell}
$$

Fact: Each $f_{i j}$ is also computable by size s homogeneous formulas

- The above expression is a $\Sigma \Pi \Sigma \Pi^{[2 d / 3]}$ circuit. We want a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit.
- In each iteration, if the highest degree factor has degree more than t, expand again.

Reduction to depth four, again

$$
f=\sum_{i=1}^{s} f_{i 1} \cdots f_{i \ell}
$$

Fact: Each $f_{i j}$ is also computable by size s homogeneous formulas

- The above expression is a $\Sigma \Pi \Sigma \Pi^{[2 d / 3]}$ circuit. We want a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit.
- In each iteration, if the highest degree factor has degree more than t, expand again.

Question: How many iterations?

Reduction to depth four, again

$$
f=\sum_{i=1}^{s} f_{i 1} \cdots f_{i \ell}
$$

Fact: Each $f_{i j}$ is also computable by size s homogeneous formulas

- The above expression is a $\Sigma \Pi \Sigma \Pi^{[2 d / 3]}$ circuit. We want a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit.
- In each iteration, if the highest degree factor has degree more than t, expand again.

Question: How many iterations? $O(d / t)$ again.

Reduction to depth four, again

$$
f=\sum_{i=1}^{s} f_{i 1} \cdots f_{i \ell}
$$

Fact: Each $f_{i j}$ is also computable by size s homogeneous formulas

- The above expression is a $\Sigma \Pi \Sigma \Pi^{[2 d / 3]}$ circuit. We want a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit.
- In each iteration, if the highest degree factor has degree more than t, expand again.

Question: How many iterations? $O(d / t)$ again.
Proof: There are at least two terms of degree $t / 9$. Yada Yada Yada

Reduction to depth four, again

$$
f=\sum_{i=1}^{s} f_{i 1} \cdots f_{i \ell}
$$

Fact: Each $f_{i j}$ is also computable by size s homogeneous formulas

- The above expression is a $\Sigma \Pi \Sigma \Pi^{[2 d / 3]}$ circuit. We want a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit.
- In each iteration, if the highest degree factor has degree more than t, expand again.

Question: How many iterations? $O(d / t)$ again.
Proof: There are at least two terms of degree $t / 9$. Yada Yada Yada

Yields a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit of top fan-in $s^{O(d / t)}$.

Wait... what's different?

For circuits:

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdots f_{i 5}
$$

For homogeneous formulas:

$$
f=\sum_{i=1}^{s} f_{i 1} \cdot f_{i 2} \cdots f_{i \ell}
$$

Wait... what's different?

For circuits:

$$
f=\sum_{i=1}^{s}\left(\sum_{j=1}^{s} g_{i 1} \cdots g_{i 5}\right) \cdot f_{i 2} \cdots f_{i 5}
$$

For homogeneous formulas:

$$
f=\sum_{i=1}^{n}\left(\sum_{i=1}^{n} s_{k} \cdots s_{i}\right) \cdot f_{i} \cdots f_{i}
$$

Wait... what's different?

For circuits:

$$
f=\sum_{i=1}^{s^{2}} f_{i 1} \cdot f_{i 2} \cdots f_{i 9}
$$

For homogeneous formulas:

$$
f=\sum_{i=1}^{s^{2}} f_{i 1} \cdot f_{i 2} \cdots f_{i(2 \ell)}
$$

Wait... what's different?

For circuits:

$$
f=\sum_{i=1}^{s^{4}} f_{i 1} \cdot f_{i 2} \cdots f_{i 13}
$$

For homogeneous formulas:

$$
f=\sum_{i=1}^{s^{4}} f_{i 1} \cdot f_{i 2} \cdots f_{i(3 \ell)}
$$

Wait... what's different?

For circuits:

$$
f=\sum_{i=1}^{s^{r}} f_{i 1} \cdot f_{i 2} \cdots f_{i(4 r+1)}
$$

For homogeneous formulas:

$$
f=\sum_{i=1}^{s^{r}} f_{i 1} \cdot f_{i 2} \cdots f_{i(r \ell)}
$$

Wait... what's different?

For circuits:

$$
\begin{aligned}
f= & \sum_{i=1}^{s^{r}} f_{i 1} \cdot f_{i 2} \cdots f_{i(4 r+1)} \\
& a \Sigma \Pi^{[O(d / t)]} \Sigma \Pi^{[t]} \text { circuit }
\end{aligned}
$$

For homogeneous formulas:

$$
\begin{aligned}
f= & \sum_{i=1}^{s^{r}} f_{i 1} \cdot f_{i 2} \cdots f_{i(r \ell)} \\
& \text { a } \Sigma \Pi^{[O(d / t) \cdot \log d]} \Sigma \Pi^{[t]} \text { circuit }
\end{aligned}
$$

Wait... what's different?

For circuits:

$$
\begin{aligned}
f= & \sum_{i=1}^{s^{r}} f_{i 1} \cdot f_{i 2} \cdots f_{i(4 r+1)} \\
& a \Sigma \Pi^{[O(d / t)]} \Sigma \Pi^{[t]} \text { circuit }
\end{aligned}
$$

For homogeneous formulas:

$$
\begin{aligned}
f= & \sum_{i=1}^{s^{r}} f_{i 1} \cdot f_{i 2} \cdots f_{i(r \ell)} \\
& \text { a } \Sigma \Pi^{[O(d / t) \cdot \log d]} \Sigma \Pi^{[t]} \text { circuit } \\
& \text { Here, } \Delta \mathrm{s} \text { factorize more }
\end{aligned}
$$

> Is that a big deal?

Circuit class No. factors of $\Delta \mid$ Lower bound

Is that a big dea		
Circuit class	No. factors of Δ	Lower bound
Hom. $\Sigma \Pi \Sigma$	$O(n)$	$n^{\Omega(n)}$

Is that a big deal?

Circuit class	No. factors of Δ	Lower bound
Hom. $\Sigma \Pi \Sigma$	$O(n)$	$n^{\Omega(n)}$
Multilinear formulas	$O(\log n)$	$n^{\Omega(\log n)}$

Is that a big deal?

Circuit class	No. factors of Δ	Lower bound
Hom. $\Sigma \Pi \Sigma$	$O(n)$	$n^{\Omega(n)}$
Multilinear formulas	$O(\log n)$	$n^{\Omega(\log n)}$
Multilinear, depth- Δ	$n^{O(1 / \Delta)}$	$n^{n^{(1 / \Delta)}}$

Is that a big deal?

Circuit class	No. factors of Δ	Lower bound
Hom. $\Sigma \Pi \Sigma$	$O(n)$	$n^{\Omega(n)}$
Multilinear formulas	$O(\log n)$	$n^{\Omega(\log n)}$
Multilinear, depth- Δ	$n^{O(1 / \Delta)}$	$n^{n^{\Omega(1 / \Delta)}}$
$\Sigma \Pi \Sigma \Pi^{[t]}$	$O(d / t)$	$n^{\Omega(d / t)}$

Is that a big deal?

Circuit class	No. factors of Δ	Lower bound
Hom. $\Sigma \Pi \Sigma$	$O(n)$	$n^{\Omega(n)}$
Multilinear formulas	$O(\log n)$	$n^{\Omega(\log n)}$
Multilinear, depth- Δ	$n^{O(1 / \Delta)}$	$n^{n^{\Omega(1 / \Delta)}}$
$\Sigma \Pi \Sigma \Pi^{[t]}$	$O(d / t)$	$n^{\Omega(d / t)}$
Hom. $\Sigma \Pi \Sigma \Pi$	$O(\sqrt{d})$	$n^{O(\sqrt{d})}$

Circuit class	No. factors of Δ	Lower bound
Hom. $\Sigma \Pi \Sigma$	$O(n)$	$n^{\Omega(n)}$
Multilinear formulas	$O(\log n)$	$n^{\Omega(\log n)}$
Multilinear, depth- Δ	$n^{O(1 / \Delta)}$	$n^{n^{\Omega(1 / \Delta)}}$
$\Sigma \Pi \Sigma \Pi^{[t]}$	$O(d / t)$	$n^{\Omega(d / t)}$
Hom. $\Sigma \Pi \Sigma \Pi$	$O(\sqrt{d})$	$n^{O(\sqrt{d})}$

Wishful Question: Can we get an $n^{\Omega(\log n)}$ lower bound for homogeneous formulas, using current techniques (with slight modifications)?

Reduction to Depth-3 Circuits

$\Sigma \stackrel{\sqrt{\bar{d}}}{\Pi} \Sigma \sqrt{\sqrt{d}}_{\Pi}^{\square}$ circuits

$$
\begin{aligned}
& \downarrow \\
& \sum \bigwedge_{\text {circuits }}^{\sqrt{d}} \sum \bigwedge^{\sqrt{d}} \Sigma
\end{aligned}
$$

circuits

$$
\sum \underset{\text { circuits }}{\sum \sqrt{n}} \sum \sqrt{\sqrt{n}}
$$

App. of Ryser's formula $\Sigma \bigwedge \Sigma \wedge^{\sqrt{d}} \bigwedge^{\sqrt{d}} \Sigma$ circuits

circuits

Einivil circuits

App. of Ryser's formula $\sum \bigwedge \bigwedge^{\sqrt{d}} \sum \bigwedge \bigwedge^{\sqrt{d}} \sum$ circuits

$$
\sum \sum_{\text {circuits }}^{\sqrt{d}} \sum \frac{\sqrt{d}}{\|}
$$

Step 1: $\Sigma \Pi \Sigma \Pi$ to $\Sigma \wedge \Sigma \wedge \Sigma$

Step 1: $\Sigma \Pi \Sigma \Pi$ to $\Sigma \wedge \Sigma \wedge \Sigma$

Recall Ryser's formula:

$$
\operatorname{Perm}_{n}\left[\begin{array}{ccc}
x_{11} & \ldots & x_{1 n} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right]=\sum_{S \subseteq[n]}(-1)^{n-|S|} \prod_{i=1}^{n} \sum_{j \in S} x_{i j}
$$

Step 1: $\Sigma \Pi \Sigma \Pi$ to $\Sigma \wedge \Sigma \wedge \Sigma$

Recall Ryser's formula:

$$
\operatorname{Perm}_{n}\left[\begin{array}{ccc}
x_{1} & \ldots & x_{n} \\
\vdots & \ddots & \vdots \\
x_{1} & \ldots & x_{n}
\end{array}\right]=\sum_{S \subseteq[n]}(-1)^{n-|S|} \prod_{i=1}^{n} \sum_{j \in S} x_{j}
$$

Step 1: $\Sigma \Pi \Sigma \Pi$ to $\Sigma \wedge \Sigma \wedge \Sigma$

Recall Ryser's formula:

$$
\operatorname{Perm}_{n}\left[\begin{array}{ccc}
x_{1} & \ldots & x_{n} \\
\vdots & \ddots & \vdots \\
x_{1} & \ldots & x_{n}
\end{array}\right]=\sum_{S \subseteq[n]}(-1)^{n-|S|}\left(\sum_{j \in S} x_{j}\right)^{n}
$$

Step 1: $\Sigma \Pi \Sigma \Pi$ to $\Sigma \wedge \Sigma \wedge \Sigma$

Recall Ryser's formula:

$$
n!\cdot x_{1} \ldots x_{n}=\sum_{s \in[[n]}(-1)^{n-|s|}\left(\sum_{j \in S} x_{j}\right)^{n}
$$

Step 1: $\Sigma \Pi \Sigma \Pi$ to $\Sigma \wedge \Sigma \wedge \Sigma$

n!\cdot x_{1} ··· x_{n}=\sum_{S \subseteq[n]}(-1)^{n-|S|}\left(\sum_{j \in S} x_{j}\right)^{n}
\]

Step 1: $\Sigma \Pi \Sigma \Pi$ to $\Sigma \wedge \Sigma \wedge \Sigma$

n!\cdot x_{1} ··· x_{n}=\sum_{S \subseteq[n]}(-1)^{n-|S|}\left(\sum_{j \in S} x_{j}\right)^{n}
\]

Step 1: $\Sigma \Pi \Sigma \Pi$ to $\Sigma \wedge \Sigma \wedge \Sigma$

Step 1: $\Sigma \Pi \Sigma \Pi$ to $\Sigma \wedge \Sigma \wedge \Sigma$

$\Sigma \stackrel{\sqrt{\bar{h}}}{\Pi} \Sigma \sqrt{\sqrt{d}}_{\Pi}^{\square}$
 circuits

$$
\begin{gathered}
\downarrow \\
\sum \bigwedge_{\text {circuits }}^{\sqrt{d}} \sum \bigwedge^{\sqrt{d}} \Sigma
\end{gathered}
$$

circuits

รilivil
 circuits

$\Sigma \wedge \Sigma \wedge^{\sqrt{d}} \bigwedge^{\sqrt{d}} \Sigma$
circuits

I
 $\Sigma \Pi \Sigma$
 circuits

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$
$\Sigma \wedge \Sigma^{\prime \prime}{ }^{\prime \prime} \Sigma$
$\ell^{\sqrt{d}}$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$
$\Sigma \wedge \sum^{\prime \prime}{ }^{\prime \prime} \Sigma$

$$
\ell_{1}^{\sqrt{d}}+\ldots+\ell_{s}^{\sqrt{d}}
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
\Sigma \wedge \Sigma \wedge_{\sqrt{1}}^{\sqrt{n}} \Sigma
$$

$$
\left(e_{1}^{\sqrt{1}}+\ldots+e_{2}^{\sqrt{7}}\right)^{\sqrt{1 /}}
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
\Sigma \wedge^{\sqrt{A}} \Sigma \wedge^{\sqrt{A}} \Sigma
$$

$$
\sum_{i}\left(\sqrt[e n]{\sqrt[n]{1}}+\cdots+e_{\sqrt{2}}^{\sqrt[n]{2}}\right)^{\sqrt{d}}
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
c=\sum_{i}\left(e_{i 1}^{i_{1}}+\cdots+e_{i n}^{i_{1}}\right)^{\sqrt{d}}
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
T=\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}}
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
T=\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}}
$$

Lemma ([Saxena])

There exists univariate polynomials $f_{i j}$'s of degree at most d such that

$$
\left(x_{1}+\cdots+x_{s}\right)^{d}=\sum_{i=1}^{s d+1} \prod_{j=1}^{s} f_{i j}\left(x_{j}\right)
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
T=\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}}
$$

Lemma ([Saxena])

There exists univariate polynomials $f_{i j}$'s of degree at most d such that

$$
\left(x_{1}+\cdots+x_{s}\right)^{d}=\sum_{i=1}^{s d+1} \prod_{j=1}^{s} f_{i j}\left(x_{j}\right)
$$

Sketch of a proof by Shpilka

$$
\left.P_{\mathbf{x}}(t)=\left(1+x_{1} t\right) \ldots\left(1+x_{s} t\right)=1+\ell t+\text { (higher degree terms }\right)
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
T=\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}}
$$

Lemma ([Saxena])

There exists univariate polynomials $f_{i j}$'s of degree at most d such that

$$
\left(x_{1}+\cdots+x_{s}\right)^{d}=\sum_{i=1}^{s d+1} \prod_{j=1}^{s} f_{i j}\left(x_{j}\right)
$$

Sketch of a proof by Shpilka

$$
P_{\mathbf{x}}(t)-1=\ell t+\quad \text { (higher degree terms) }
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
T=\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}}
$$

Lemma ([Saxena])

There exists univariate polynomials $f_{i j}$'s of degree at most d such that

$$
\left(x_{1}+\cdots+x_{s}\right)^{d}=\sum_{i=1}^{s d+1} \prod_{j=1}^{s} f_{i j}\left(x_{j}\right)
$$

Sketch of a proof by Shpilka

$$
\left.\left(P_{\mathbf{x}}(t)-1\right)^{d}=\ell^{d} t^{d}+\quad \text { (higher degree terms }\right)
$$

$$
\begin{gathered}
\text { Step 2: } \Sigma \wedge \Sigma \wedge \Sigma \text { to } \Sigma \Pi \Sigma \\
T=\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}}
\end{gathered}
$$

Lemma ([Saxena])

There exists univariate polynomials $f_{i j}$'s of degree at most d such that

$$
\left(x_{1}+\cdots+x_{s}\right)^{d}=\sum_{i=1}^{s d+1} \prod_{j=1}^{s} f_{i j}\left(x_{j}\right)
$$

Sketch of a proof by Shpilka

$$
\left(P_{\mathrm{x}}(t)-1\right)^{d}=\ell^{d} t^{d}+\quad \text { (higher degree terms) }
$$

Interpolate!
$\left(P_{\mathbf{x}}(t)-1\right)^{d}$ expanded is a sum of $(d+1)$ product of univariates.

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
\begin{gathered}
T=\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}} \\
\left(x_{1}+\cdots+x_{s}\right)^{\sqrt{d}}=\sum_{i}^{\text {poly }(s, d)} \prod_{j=1}^{s} f_{i j}\left(x_{j}\right)
\end{gathered}
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
\begin{gathered}
T=\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}} \\
\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}}=\sum_{i}^{\text {poly }(s, d)} \prod_{j=1}^{s} f_{i j}\left(\ell_{j}^{\sqrt{d}}\right)
\end{gathered}
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
\begin{aligned}
T & =\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}} \\
\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}}= & \sum_{i}^{\operatorname{poly}(s, d)} \prod_{j=1}^{s} f_{i j}\left(\ell_{j}^{\sqrt{d}}\right) \\
= & \sum_{i}^{\operatorname{poly}(s, d)} \prod_{j=1}^{s} \tilde{f}_{i j}\left(\ell_{j}\right) \\
& \text { where } \tilde{f}_{i j}(t):=f_{i j}\left(t^{\sqrt{d}}\right)
\end{aligned}
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
\begin{aligned}
& T=\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}} \\
&\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}}=\sum_{i}^{\operatorname{poly}(s, d)} \prod_{j=1}^{s} f_{i j}\left(\ell_{j}^{\sqrt{d}}\right) \\
&=\sum_{i}^{\operatorname{poly}(s, d)} \prod_{j=1}^{s} \tilde{f}_{i j}\left(\ell_{j}\right)
\end{aligned}
$$

Note that $\tilde{f}_{i j}(t)$ is a univariate polynomial

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
\begin{aligned}
& T=\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}} \\
&\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}}=\sum_{i}^{\operatorname{poly}(s, d)} \prod_{j=1}^{s} f_{i j}\left(\ell_{j}^{\sqrt{d}}\right) \\
&=\sum_{i}^{\operatorname{poly}(s, d)} \prod_{j=1}^{s} \tilde{f}_{i j}\left(\ell_{j}\right)
\end{aligned}
$$

Note that $\tilde{f}_{i j}(t)$ is a univariate polynomial that can be factorized over \mathbb{C} :

$$
\tilde{f}_{i, t}(t)=\prod_{k=1}^{d}\left(t-\xi_{j, j)}\right.
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
\begin{aligned}
& T=\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}} \\
&\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}}=\sum_{i}^{\operatorname{poly}(s, d)} \prod_{j=1}^{s} f_{i j}\left(\ell_{j}^{\sqrt{d}}\right) \\
&=\sum_{i}^{\operatorname{pol}(s, d)} \prod_{j=1}^{s} \tilde{f}_{i j}\left(\ell_{j}\right)
\end{aligned}
$$

Note that $\tilde{f}_{i j}(t)$ is a univariate polynomial that can be factorized over \mathbb{C} :

$$
\tilde{f}_{i j}\left(e_{j}\right)=\prod_{k=1}^{d}\left(e_{j}-\zeta_{i j k}\right)
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
\begin{aligned}
& T=\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}} \\
&\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}}=\sum_{i}^{\operatorname{pol}(s, d)} \prod_{j=1}^{s} f_{i}\left(\ell_{j}^{\sqrt{d}}\right) \\
&\left.=\sum_{i}^{\operatorname{poll(s)}} \prod_{j=1}^{S} f_{i j} f_{i j}\right) \\
&=\sum_{i}^{\operatorname{poll}(s, d)} \prod_{j=1}^{S} \prod_{k=1}^{d}\left(\ell_{j}-\zeta_{i j k}\right)
\end{aligned}
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
\begin{aligned}
& T=\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}} \\
&\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}}= \sum_{i}^{\operatorname{poly}(s, d)} \prod_{j=1}^{s} f_{i j}\left(\ell_{j}^{\sqrt{d}}\right) \\
&= \sum_{i}^{\operatorname{poly}(s, d)} \prod_{j=1}^{s} \tilde{f}_{i j}\left(\ell_{j}\right) \\
&= \sum_{i}^{\operatorname{poly}(s, d)} \prod_{j=1}^{s} \prod_{k=1}^{d}\left(\ell_{j}-\zeta_{i j k}\right) \\
& \ldots \text { a } \Sigma \Pi \Sigma \text { circuit of poly }(s, d) \text { size. }
\end{aligned}
$$

Step 2: $\Sigma \wedge \Sigma \wedge \Sigma$ to $\Sigma \Pi \Sigma$

$$
\begin{aligned}
& T=\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}} \\
&\left(\ell_{1}^{\sqrt{d}}+\cdots+\ell_{s}^{\sqrt{d}}\right)^{\sqrt{d}}=\sum_{i}^{\operatorname{poll(s)}} \prod_{j=1}^{s} f_{i j}\left(\ell_{j}^{\sqrt{d}}\right) \\
&=\sum_{i}^{\operatorname{poll(s,d)}} \prod_{j=1}^{n} \tilde{f}_{i j}\left(\ell_{j}\right) \\
&=\sum_{i}^{\operatorname{poll(s)}} \prod_{j=1}^{S} \prod_{k=1}^{d}\left(\ell_{j}-\zeta_{i j k}\right)
\end{aligned}
$$

... a $\Sigma \Pi \Sigma$ circuit of $\operatorname{poly}(s, d)$ size and degree $s d$.

Putting it together

general circuit

 of size s
Putting it together

general circuit

Putting it together

Putting it together

Putting it together

Putting it together

Question: Where should one try to prove lower bounds?

Putting it together

Question: Where should one try to prove lower bounds?

Putting it together

Question: Where should one try to prove lower bounds?

Putting it together

Question: Where should one try to prove lower bounds?

Putting it together

$\Sigma \Pi \sum$ non-hom. circuits of size $s O(\sqrt{d})$

Question: Where should one try to prove lower bounds?

Putting it together

$\Sigma \prod \sum$ non-hom. circuits of size $s^{O(\sqrt{d})}$

- Depth reduction can manifest in many forms. Finding the right building block is sometimes crucial.
- A slightly different proof of [Tavenas] yields a possible useful building block for homogeneous formulas with more factors.
- Maybe we can get $n^{\Omega(\log n)}$ lower bounds via modified shifted-partials.
- Can we say something similar about $\Sigma \Pi \Sigma \Pi^{[t]}$ circuits obtained from ABPs ?

Call for contributors
A git survey on arithmetic circuit lower bounds: https://github.com/dasarpmar/lowerbounds-survey/

