
Depth reduction in
arithmetic circuits

Ramprasad Saptharishi
Tel Aviv University

WACT
March 2015, Saarbrücken

Polynomials

f (x1, x2, x3, x4) = 1+ x1+ x2+ x3+ x4

+ x1x2+ x1x3+ x1x4+ x2x3+ x2x4+ x3x4

+ x2x3x4+ x1x3x4+ x1x2x4+ x1x2x3

+ x1x2x3x4

Polynomials

f (x1, x2, x3, x4) = 1+ x1+ x2+ x3+ x4

+ x1x2+ x1x3+ x1x4+ x2x3+ x2x4+ x3x4

+ x2x3x4+ x1x3x4+ x1x2x4+ x1x2x3

+ x1x2x3x4

f (x1, x2, x3, x4) = (1+ x1)(1+ x2)(1+ x3)(1+ x4)

“How hard is it to compute a given n-variate degree d polynomial?”

Arithmetic Formulae

..

1

.

x1

.

1

.

x2

.

1

.

x3

.

1

.

x4

.

+

.

+

.

+

.

+

.×.
f (x1, x2, x3, x4)

▶ Tree
▶ Leaves containing variables or constants

Arithmetic Circuits

..x1 .x2. x3.

+

.

+

.

+

.

+

.

+

.

+

.

×

.

×

.

×

.

+

.

f (x1, x2, x3)

Arithmetic Branching Programs

.......................

A directed layered graph with a unique source node s and sink node t .
Each edge e holds a linear polynomial ℓe .

Arithmetic Branching Programs

.......................

A directed layered graph with a unique source node s and sink node t .
Each edge e holds a linear polynomial ℓe .

wt(P) =
∏
e∈P

ℓe

Arithmetic Branching Programs

.......................

A directed layered graph with a unique source node s and sink node t .
Each edge e holds a linear polynomial ℓe .

Computes f =
∑

P :s⇝t

wt(P)

Arithmetic Branching Programs

.......................

A directed layered graph with a unique source node s and sink node t .
Each edge e holds a linear polynomial ℓe .

Computes f =
∑

P :s⇝t

wt(P)

Equivalent to iterated matrix product

Relationship between these classes

Formulas ⊆ ABP

⊆ Circuits

Relationship between these classes

Formulas ⊆ ABP

⊆ Circuits

... f. g.

h

..
f g + h :

Relationship between these classes

Formulas ⊆ ABP ⊆ Circuits

...

.

Savitch

Relationship between these classes

Formulas ⊆ ABP ⊆ Circuits

...

.

Savitch

Relationship between these classes

Formulas ⊆ ABP ⊆ Circuits

....

Savitch

Homogenization
“Thou shalt not compute polynomials of larger degree than thou needst”

▶ All gates compute homogeneous polynomials.
▶ Hence, no gate can compute polynomials of degree larger than

output.
▶ For circuits and ABPs, homogeneity can be assumed without loss of

generality. For formulas, probably not.For constant depth formulas,
certainly not.

g = g1+ g2 −→ g (i) = g (i)1 + g (i)2

g = g1× g2 −→ g (i) =
i∑

j=0

g (j)1 × g (i− j)
2

Homogenization
“Thou shalt not compute polynomials of larger degree than thou needst”

▶ All gates compute homogeneous polynomials.

▶ Hence, no gate can compute polynomials of degree larger than
output.

▶ For circuits and ABPs, homogeneity can be assumed without loss of
generality. For formulas, probably not.For constant depth formulas,
certainly not.

g = g1+ g2 −→ g (i) = g (i)1 + g (i)2

g = g1× g2 −→ g (i) =
i∑

j=0

g (j)1 × g (i− j)
2

Homogenization
“Thou shalt not compute polynomials of larger degree than thou needst”

▶ All gates compute homogeneous polynomials.
▶ Hence, no gate can compute polynomials of degree larger than

output.

▶ For circuits and ABPs, homogeneity can be assumed without loss of
generality. For formulas, probably not.For constant depth formulas,
certainly not.

g = g1+ g2 −→ g (i) = g (i)1 + g (i)2

g = g1× g2 −→ g (i) =
i∑

j=0

g (j)1 × g (i− j)
2

Homogenization
“Thou shalt not compute polynomials of larger degree than thou needst”

▶ All gates compute homogeneous polynomials.
▶ Hence, no gate can compute polynomials of degree larger than

output.
▶ For circuits and ABPs, homogeneity can be assumed without loss of

generality.

For formulas, probably not.For constant depth formulas,
certainly not.

g = g1+ g2 −→ g (i) = g (i)1 + g (i)2

g = g1× g2 −→ g (i) =
i∑

j=0

g (j)1 × g (i− j)
2

Homogenization
“Thou shalt not compute polynomials of larger degree than thou needst”

▶ All gates compute homogeneous polynomials.
▶ Hence, no gate can compute polynomials of degree larger than

output.
▶ For circuits and ABPs, homogeneity can be assumed without loss of

generality. For formulas, probably not.

For constant depth formulas,
certainly not.

g = g1+ g2 −→ g (i) = g (i)1 + g (i)2

g = g1× g2 −→ g (i) =
i∑

j=0

g (j)1 × g (i− j)
2

Homogenization
“Thou shalt not compute polynomials of larger degree than thou needst”

▶ All gates compute homogeneous polynomials.
▶ Hence, no gate can compute polynomials of degree larger than

output.
▶ For circuits and ABPs, homogeneity can be assumed without loss of

generality. For formulas, probably not.For constant depth formulas,
certainly not.

g = g1+ g2 −→ g (i) = g (i)1 + g (i)2

g = g1× g2 −→ g (i) =
i∑

j=0

g (j)1 × g (i− j)
2

Homogenization
“Thou shalt not compute polynomials of larger degree than thou needst”

▶ All gates compute homogeneous polynomials.
▶ Hence, no gate can compute polynomials of degree larger than

output.
▶ For circuits and ABPs, homogeneity can be assumed without loss of

generality. For formulas, probably not.For constant depth formulas,
certainly not.

g = g1+ g2 −→ g (i) = g (i)1 + g (i)2

g = g1× g2 −→ g (i) =
i∑

j=0

g (j)1 × g (i− j)
2

The illustrious siblings

Detn(x11, . . . , xnn) =
∑
σ∈Sn

sign(σ) · x1σ(1) . . . xnσ(n)

Permn(x11, . . . , xnn) =
∑
σ∈Sn

sign(σ)·x1σ(1) . . . xnσ(n)

..

Detn

.vs .

Permn

.
[Valiant-79]

.

VP

. vs.

VNP

The illustrious siblings

Detn(x11, . . . , xnn) =
∑
σ∈Sn

sign(σ) · x1σ(1) . . . xnσ(n)

Permn(x11, . . . , xnn) =
∑
σ∈Sn

sign(σ)·x1σ(1) . . . xnσ(n)

..

Detn

.vs .

Permn

.
[Valiant-79]

.

VP

. vs.

VNP

Why?
..

Err...

Why?
..

Err...
▶ We would obtain new algorithms for

polynomial identity testing.

▶ Identity testing has relevence to primality,
results such as IP= PSPACE, bipartite
matching etc. :-|

Why?
..

Err...
▶ We would obtain new algorithms for

polynomial identity testing.

▶ Identity testing has relevence to primality,
results such as IP= PSPACE, bipartite
matching etc. :-|

General roadmap
for lower bounds

Four steps in most lower bound proofs
Step 1: Finding the right building blocks

Four steps in most lower bound proofs
Step 1: Finding the right building blocks..

=

.
Meta Theorem 1..
.Every small circuit can be equivalently computed as a sum of few

.
s

Four steps in most lower bound proofs
Step 1: Finding the right building blocks
.
Meta Theorem 1..
.Every small circuit can be equivalently computed as a sum of few

.
s

Four steps in most lower bound proofs
Step 1: Finding the right building blocks
.
Meta Theorem 1..
.Every small circuit can be equivalently computed as a sum of few

.
s

Step 2: Constructing a complexity measure
.
Meta Theorem 2..
.Find a map Γ : F[x]→Z≥0 such that Γ

� . �
is small.

Four steps in most lower bound proofs
Step 1: Finding the right building blocks
.
Meta Theorem 1..
.Every small circuit can be equivalently computed as a sum of few

.
s

Step 2: Constructing a complexity measure
.
Meta Theorem 2..
.Find a map Γ : F[x]→Z≥0 such that Γ

� . �
is small.

Step 3: Heuristic estimate for a random polynomial
.
Meta Theorem 2..

.
Convince yourself that Γ(R) must be LARGE for a random polynomial
R.

Four steps in most lower bound proofs
Step 1: Finding the right building blocks
.
Meta Theorem 1..
.Every small circuit can be equivalently computed as a sum of few

.
s

Step 2: Constructing a complexity measure
.
Meta Theorem 2..
.Find a map Γ : F[x]→Z≥0 such that Γ

� . �
is small.

Step 3: Heuristic estimate for a random polynomial
.
Meta Theorem 2..

.
Convince yourself that Γ(R) must be LARGE for a random polynomial
R.

Step 4: Find a hay in the haystack

Four steps in most lower bound proofs
Step 1: Finding the right building blocks..

=

.
Meta Theorem 1..
.Every small circuit can be equivalently computed as a sum of few

.
s

Four steps in most lower bound proofs
Step 1: Finding the right building blocks..

=

.
Meta Theorem 1..
.Every small circuit can be equivalently computed as a sum of few

.
s

Depth reduction

A short history of depth reduction
Circuit Class Depth Size

Formulas O(log s) poly(s) [Brent]

Circuits O(log d) s log s [Hyafil]

Circuits O(log d) poly(s) [Valiant-Skyum-Berkowitz-Rackoff]

Circuits 4 [Agrawal-Vinay]

[Koiran]

sO(
p

d) [Tavenas]

Circuits 3∗ sO(
p

d) [Gupta-Kamath-Kayal-S]

A short history of depth reduction
Circuit Class Depth Size

Formulas O(log s) poly(s) [Brent]

Circuits O(log d) s log s [Hyafil]

Circuits O(log d) poly(s) [Valiant-Skyum-Berkowitz-Rackoff]

Circuits 4 [Agrawal-Vinay]

[Koiran]

sO(
p

d) [Tavenas]

Circuits 3∗ sO(
p

d) [Gupta-Kamath-Kayal-S]

A short history of depth reduction
Circuit Class Depth Size

Formulas O(log s) poly(s) [Brent]

Circuits O(log d) s log s [Hyafil]

Circuits O(log d) poly(s) [Valiant-Skyum-Berkowitz-Rackoff]

Circuits 4 [Agrawal-Vinay]

[Koiran]

sO(
p

d) [Tavenas]

Circuits 3∗ sO(
p

d) [Gupta-Kamath-Kayal-S]

A short history of depth reduction
Circuit Class Depth Size

Formulas O(log s) poly(s) [Brent]

Circuits O(log d) s log s [Hyafil]

Circuits O(log d) poly(s) [Valiant-Skyum-Berkowitz-Rackoff]

Circuits 4 2o(n) [Agrawal-Vinay]

[Koiran]

sO(
p

d) [Tavenas]

Circuits 3∗ sO(
p

d) [Gupta-Kamath-Kayal-S]

A short history of depth reduction
Circuit Class Depth Size

Formulas O(log s) poly(s) [Brent]

Circuits O(log d) s log s [Hyafil]

Circuits O(log d) poly(s) [Valiant-Skyum-Berkowitz-Rackoff]

Circuits 4 ���2o(n) [Agrawal-Vinay]
sO(
p

d log d) [Koiran]

sO(
p

d) [Tavenas]

Circuits 3∗ sO(
p

d) [Gupta-Kamath-Kayal-S]

A short history of depth reduction
Circuit Class Depth Size

Formulas O(log s) poly(s) [Brent]

Circuits O(log d) s log s [Hyafil]

Circuits O(log d) poly(s) [Valiant-Skyum-Berkowitz-Rackoff]

Circuits 4 ���2o(n) [Agrawal-Vinay]
�����
sO(
p

d log d) [Koiran]
sO(
p

d) [Tavenas]

Circuits 3∗ sO(
p

d) [Gupta-Kamath-Kayal-S]

A short history of depth reduction
Circuit Class Depth Size

Formulas O(log s) poly(s) [Brent]

Circuits O(log d) s log s [Hyafil]

Circuits O(log d) poly(s) [Valiant-Skyum-Berkowitz-Rackoff]

Circuits 4 ���2o(n) [Agrawal-Vinay]
�����
sO(
p

d log d) [Koiran]
sO(
p

d) [Tavenas]

Circuits 3∗ sO(
p

d) [Gupta-Kamath-Kayal-S]

Other depth reductions in lower bounds
.
Multilinear formulas [Raz, Raz-Yehudayoff]
..

.
f =

s∑
i=1

gi1 · gi2 . . . giℓ , (1/3) j · n ≤ Var(gi j) ≤ (2/3) j · n

Other depth reductions in lower bounds
.
Multilinear formulas [Raz, Raz-Yehudayoff]
..

.
f =

s∑
i=1

gi1 · gi2 . . . giℓ , (1/3) j · n ≤ Var(gi j) ≤ (2/3) j · n

.
Homogeneous formulas [Hrubes-Yehudayoff]
..

.
f =

s∑
i=1

gi1 · gi2 . . . giℓ , (1/3) j · d ≤ deg(gi j) ≤ (2/3) j · d

Other depth reductions in lower bounds
.
Multilinear formulas [Raz, Raz-Yehudayoff]
..

.
f =

s∑
i=1

gi1 · gi2 . . . giℓ , (1/3) j · n ≤ Var(gi j) ≤ (2/3) j · n

.
Homogeneous formulas [Hrubes-Yehudayoff]
..

.
f =

s∑
i=1

gi1 · gi2 . . . giℓ , (1/3) j · d ≤ deg(gi j) ≤ (2/3) j · d

.
HomogeneousΣΠΣΠ [Kayal-Limaye-Saha-Srinivasan]
..

.
f = ΣΠΣΠ[

p
d] +

s∑
i=1

mi Qi , deg(mi)≥
p

d

Plan

▶ Classical depth reductions of [Brent] and [VSBR].

▶ A slightly different proof of [Tavenas]

▶ Better building blocks for homogeneous formulas

▶ (depending on time) Reduction to depth three [GKKS2]

Depth reducing formulas

..
Φ

1

Depth reducing formulas

..
Φ

1

.

s
3 ≤ |subtree| ≤ 2s

3

Depth reducing formulas

..
Φ1.

z

.
Φ2

Depth reducing formulas

..
Φ1.

z

.
Φ2

Φ1(z) = A · z + B
Φ = A ·Φ2 + B

Depth reducing formulas

..
Φ1.

z

.
Φ2

Φ1(z) = A · z + B
Φ = A ·Φ2 + B = (Φ1(1)−Φ1(0)) ·Φ2 + Φ1(0)

Depth reducing formulas

..Φ .

+

.

×

.

Φ1(0)

.

+

.

Φ2

.

Φ1(1)

.

Φ1(0)

.

(−1)

Φ1(z) = A · z + B
Φ = A ·Φ2 + B = (Φ1(1)−Φ1(0)) ·Φ2 + Φ1(0)

Depth reducing formulas

..Φ .

+

.

×

.

Φ1(0)

.

+

.

Φ2

.

Φ1(1)

.

Φ1(0)

.

(−1)

Size(s) ≤ 4 · Size(2s/3) + O(1)

=⇒ poly(s)

Depth(s) ≤ Depth(2s/3) + O(1)

=⇒ O(log s)

Depth reducing formulas

..Φ .

+

.

×

.

Φ1(0)

.

+

.

Φ2

.

Φ1(1)

.

Φ1(0)

.

(−1)

Size(s) ≤ 4 · Size(2s/3) + O(1) =⇒ poly(s)
Depth(s) ≤ Depth(2s/3) + O(1)

=⇒ O(log s)

Depth reducing formulas

..Φ .

+

.

×

.

Φ1(0)

.

+

.

Φ2

.

Φ1(1)

.

Φ1(0)

.

(−1)

Size(s) ≤ 4 · Size(2s/3) + O(1) =⇒ poly(s)
Depth(s) ≤ Depth(2s/3) + O(1) =⇒ O(log s)

Depth reducing formulas

..Φ .

+

.

×

.

Φ1(0)

.

+

.

Φ2

.

Φ1(1)

.

Φ1(0)

.

(−1)

Size(s) ≤ 4 · Size(2s/3) + O(1) =⇒ poly(s)
Depth(s) ≤ Depth(2s/3) + O(1) =⇒ O(log s)

Adapting to circuits

..
Φ

Adapting to circuits

..
Φ
.

s
3 ≤ size≤ 2s

3

Adapting to circuits

..
Φ
.

s
3 ≤ size≤ 2s

3

.

Not true for circuits!

Adapting to circuits

..
Φ
.

d
3 ≤ degree≤ 2d

3

Adapting to circuits

..
Φ
.

d
3 ≤ degree≤ 2d

3

.

Multiple paths from root!

Adapting to circuits: Attempt 1

..Φ

Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«

Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

each have degree at most 2d/3

Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

each have degree at most 2d/3
Interpolate!

Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

Depth(d) = Depth(2d/3)+O(1)

Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

Depth(d) = O(log d)

Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

Depth(d) = O(log d)
Size(s , d) = ?

Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

Depth(d) = O(log d)

Size(s , d) = sO(log d)

Adapting to circuits: [Hyafil]

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

Depth(d) = O(log d)

Size(s , d) = sO(log d)

Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .

Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]

Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .
▶ Problem is that there are multiple paths to v .

Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]

Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .
▶ Problem is that there are multiple paths to v .
Φ isn’t really a linear function in Φv .

Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]

Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .
▶ Problem is that there are multiple paths to v .
Φ isn’t really a linear function in Φv .

[VSBR]: Do not look at all paths. Only take a canonical path, like say
taking the right-edge out of every×-gate.

Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]

Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .
▶ Problem is that there are multiple paths to v .
Φ isn’t really a linear function in Φv .

[VSBR]: Do not look at all paths. Only take a canonical path, like say
taking the right-edge out of every×-gate. More like “suffixes”

Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]

Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .
▶ Problem is that there are multiple paths to v .
Φ isn’t really a linear function in Φv .

[VSBR]: Do not look at all paths. Only take a canonical path, like say
taking the right-edge out of every×-gate. More like “suffixes”

[u : v] =

0 if u is a leaf
1 if u = v
[u1 : v]+ [u2 : v] if u = u1+ u2

[u1] · [u2 : v] if u1 = u1× u2

Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]

Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .
▶ Problem is that there are multiple paths to v .
Φ isn’t really a linear function in Φv .

[VSBR]: Do not look at all paths. Only take a canonical path, like say
taking the right-edge out of every×-gate. More like “suffixes”

[u : v] =

0 if u is a leaf
1 if u = v
[u1 : v]+ [u2 : v] if u = u1+ u2

[u1] · [u2 : v] if u1 = u1× u2

Another possibility: Partial Derivatives.

Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]

Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .
▶ Problem is that there are multiple paths to v .
Φ isn’t really a linear function in Φv .

[VSBR]: Do not look at all paths. Only take a canonical path, like say
taking the right-edge out of every×-gate. More like “suffixes”

[u : v] =

0 if u is a leaf
1 if u = v
[u1 : v]+ [u2 : v] if u = u1+ u2

[u1] · [u2 : v] if u1 = u1× u2

Another possibility: Partial Derivatives.
Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]

An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] =

[v2 : v8] +
= [v4] · [v5 : v8]
= (x1x2+ x2x3) · [v5 : v8]
= (x1x2+ x2x3) · ([v8 : v8]+)
= (x1x2+ x2x3)

An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] = [v2 : v8] + [v3 : v8]

= [v4] · [v5 : v8]
= (x1x2+ x2x3) · [v5 : v8]
= (x1x2+ x2x3) · ([v8 : v8]+)
= (x1x2+ x2x3)

An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] = [v2 : v8] + ����[v3 : v8]

= [v4] · [v5 : v8]
= (x1x2+ x2x3) · [v5 : v8]
= (x1x2+ x2x3) · ([v8 : v8]+)
= (x1x2+ x2x3)

An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] = [v2 : v8] + ����[v3 : v8]
= [v4] · [v5 : v8]

= (x1x2+ x2x3) · [v5 : v8]
= (x1x2+ x2x3) · ([v8 : v8]+)
= (x1x2+ x2x3)

An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] = [v2 : v8] + ����[v3 : v8]
= [v4] · [v5 : v8]
= (x1x2+ x2x3) · [v5 : v8]

= (x1x2+ x2x3) · ([v8 : v8]+)
= (x1x2+ x2x3)

An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] = [v2 : v8] + ����[v3 : v8]
= [v4] · [v5 : v8]
= (x1x2+ x2x3) · [v5 : v8]
= (x1x2+ x2x3) · ([v8 : v8]+ [v9 : v8])

= (x1x2+ x2x3)

An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] = [v2 : v8] + ����[v3 : v8]
= [v4] · [v5 : v8]
= (x1x2+ x2x3) · [v5 : v8]
= (x1x2+ x2x3) · ([v8 : v8]+����[v9 : v8])

= (x1x2+ x2x3)

An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] = [v2 : v8] + ����[v3 : v8]
= [v4] · [v5 : v8]
= (x1x2+ x2x3) · [v5 : v8]
= (x1x2+ x2x3) · ([v8 : v8]+����[v9 : v8])
= (x1x2+ x2x3)

[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ?

[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ?

Every “right-path” must pass through exactly
one v ∈F

..×.

+

.

+

.

×

.

×

[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ? Every “right-path” must pass through exactly
one v ∈F

..×.

+

.

+

.

×

.

×

[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ? Every “right-path” must pass through exactly
one v ∈F

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ? Every “right-path” must pass through exactly
one v ∈F

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

..×.

+

.

10

. 100.

+

.

90

.

×

.

×

[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ? Every “right-path” must pass through exactly
one v ∈F

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

..×.

+

.

10

. 100.

+

.

90

.

×

.

×

Make the circuit right heavy.

[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ? Every “right-path” must pass through exactly
one v ∈F

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}
.Lemma..

.
[u] =

∑
v∈Fa

[u : v] · [v]

[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ? Every “right-path” must pass through exactly
one v ∈F

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}
.Lemma..

.

[u] =
∑

v∈Fa

[u : v] · [v]

[u : w] =
∑

v∈Fa

[u : v] · [v : w]

[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [v]

[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR]

[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [v : w]

a =
deg(u)+ deg(w)

2

[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [vL] · [vR : w]

a =
deg(u)+ deg(w)

2

[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [vL] · [vR : w] a =
deg(u)+ deg(w)

2

[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [vL] · [vR : w] a =
deg(u)+ deg(w)

2

[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [vL] · [vR : w] a =
deg(u)+ deg(w)

2

[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [vL] · [vR : w] a =
deg(u)+ deg(w)

2

=
∑

a∈Fa

[u : v] ·
∑

q∈Fa

[vL : q] · [qL] · [qR]

 · [vR : w]

[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [vL] · [vR : w] a =
deg(u)+ deg(w)

2

=
∑

a∈Fa

[u : v] ·
∑

q∈Fa

[vL : q] · [qL] · [qR]

 · [vR : w]

[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [vL] · [vR : w] a =
deg(u)+ deg(w)

2

=
∑

a∈Fa

[u : v] ·
∑

q∈Fa

[vL : q] · [qL] · [qR]

 · [vR : w]

Summarizing

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR]

[u : w] =
∑

v∈Fa

∑
q∈Fa

[u : v] · [v : q] · [qL] · [qR] · [vR : w]

.
Theorem ([Valiant-Skyum-Berkowitz-Rackoff])
..

.

If Φ is a size s circuit computing an n-variate degree d polynomial f , then
there is a circuit Φ′ computing f with the following properties.
▶ Every gate of Φ′ computes some [u : v],
▶ All addition gates have fan-in at most s2,
▶ All multiplication gates have fan-in at most 5, and
▶ If v1 is a child of a×-gate v in Φ′, then deg(v1)≤ deg(v)/2.

Hence, the depth of Φ′ is O(log d).

Summarizing

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR]

[u : w] =
∑

v∈Fa

∑
q∈Fa

[u : v] · [v : q] · [qL] · [qR] · [vR : w]

.
Theorem ([Valiant-Skyum-Berkowitz-Rackoff])
..

.

If Φ is a size s circuit computing an n-variate degree d polynomial f , then
there is a circuit Φ′ computing f with the following properties.
▶ Every gate of Φ′ computes some [u : v],
▶ All addition gates have fan-in at most s2,
▶ All multiplication gates have fan-in at most 5, and
▶ If v1 is a child of a×-gate v in Φ′, then deg(v1)≤ deg(v)/2.

Hence, the depth of Φ′ is O(log d).

Reducing to depth four

..Φ

Reducing to depth four

..Φ.
Degree>

p
d

.

Degree≤pd

Reducing to depth four

..
Top
.

Degree>
p

d
.

Degree≤pd

Reducing to depth four

..
Top
.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.
Degree>

p
d

.

Degree≤pd

.

Size
�n+
p

dp
d

�
each

Reducing to depth four

..
Top
.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.
Degree>

p
d

.

Degree≤pd

.

Size
�n+
p

dp
d

�
each

.
Lemma ([Tavenas13])..
.deg(Top(z1, . . . , zs)) ≤ 15

p
d

Reducing to depth four

..
Top
.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.

Size
�s+15

p
d

15
p

d

�
.

Degree>
p

d
.

Degree≤pd

.

Size
�n+
p

dp
d

�
each

.
Lemma ([Tavenas13])..
.deg(Top(z1, . . . , zs)) ≤ 15

p
d

Reducing to depth four

..

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.
Theorem..

.

Equivalent depth-4 circuit of size

s
�n+
p

d

n

�
+

�s + 15
p

d

s

�
= sO(

p
d)

Reducing to depth four

..

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.
Theorem..

.

Equivalent depth-4 circuit of size

s
�n+
p

d

n

�
+

�s + 15
p

d

s

�
= sO(

p
d)

Reducing to depth four

..

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.
Theorem..

.

Equivalent depth-4 circuit with bottom fan-in at most
p

d of size

s
�n+
p

d

n

�
+

�s + 15
p

d

s

�
= sO(

p
d)

Reducing to depth four

..

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.

ΣΠ

.
Theorem..

.

Equivalent ΣΠΣΠ[
p

d] circuit of size

s
�n+
p

d

n

�
+

�s + 15
p

d

s

�
= sO(

p
d)

A different perspective
Let’s start with [VSBR]

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

A different perspective
Let’s start with [VSBR]

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

This is a ΣΠΣΠ[d/2] circuit. We want to obtain a ΣΠΣΠ[t] circuit.

A different perspective
Let’s start with [VSBR]

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

This is a ΣΠΣΠ[d/2] circuit. We want to obtain a ΣΠΣΠ[t] circuit.
Each fi j is also some [u : v]. Keep expanding terms of degree more than
t .

A different perspective
Let’s start with [VSBR]

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

This is a ΣΠΣΠ[d/2] circuit. We want to obtain a ΣΠΣΠ[t] circuit.
Each fi j is also some [u : v]. Keep expanding terms of degree more than
t .

A different perspective
Let’s start with [VSBR]

f =
s∑

i=1

 s∑
j=1

g j 1 · · · g j 5

 · fi2 · fi3 · fi4 · fi5

This is a ΣΠΣΠ[d/2] circuit. We want to obtain a ΣΠΣΠ[t] circuit.
Each fi j is also some [u : v]. Keep expanding terms of degree more than
t .

A different perspective
Let’s start with [VSBR]

f =
s2∑

i=1

fi1 · · · fi9

This is a ΣΠΣΠ[d/2] circuit. We want to obtain a ΣΠΣΠ[t] circuit.
Each fi j is also some [u : v]. Keep expanding terms of degree more than
t .

A different perspective
Let’s start with [VSBR]

f =
s3∑

i=1

fi1 · · · fi13

This is a ΣΠΣΠ[d/2] circuit. We want to obtain a ΣΠΣΠ[t] circuit.
Each fi j is also some [u : v]. Keep expanding terms of degree more than
t .

A different perspective
Let’s start with [VSBR]

f =
s4∑

i=1

fi1 · · · fi17

This is a ΣΠΣΠ[d/2] circuit. We want to obtain a ΣΠΣΠ[t] circuit.
Each fi j is also some [u : v]. Keep expanding terms of degree more than
t .

A different perspective
Let’s start with [VSBR]

f =
s4∑

i=1

fi1 · · · fi17

This is a ΣΠΣΠ[d/2] circuit. We want to obtain a ΣΠΣΠ[t] circuit.
Each fi j is also some [u : v]. Keep expanding terms of degree more than
t .

How many iterations until all degrees are at most t?

Number of iterations

g =
s∑

j=1

g j 1 · g j 2 · g j 3 · g j 4 · g j 5

Number of iterations

g =
s∑

j=1

g j 1 · g j 2 · g j 3 · g j 4 · g j 5

.
Observation..
.In each summand, at least two terms have degree at least t/8.

Number of iterations

g =
s∑

j=1

g j 1︸︷︷︸
≥t/5

· g j 2 · g j 3 · g j 4 · g j 5

.
Observation..
.In each summand, at least two terms have degree at least t/8.

Number of iterations

g =
s∑

j=1

g j 1︸︷︷︸
≥t/5

· g j 2︸︷︷︸
≥t/8

· g j 3 · g j 4 · g j 5

.
Observation..
.In each summand, at least two terms have degree at least t/8.

Number of iterations

g =
s∑

j=1

g j 1︸︷︷︸
≥t/5

· g j 2︸︷︷︸
≥t/8

· g j 3 · g j 4 · g j 5

.
Observation..
.In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8?

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

Number of iterations

g =
s∑

j=1

g j 1︸︷︷︸
≥t/5

· g j 2︸︷︷︸
≥t/8

· g j 3 · g j 4 · g j 5

.
Observation..
.In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8?

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

Number of iterations

g =
s∑

j=1

g j 1︸︷︷︸
≥t/5

· g j 2︸︷︷︸
≥t/8

· g j 3 · g j 4 · g j 5

.
Observation..
.In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8?

f =
s∑

i=1

 s∑
j=1

g j 1 g j 2 g j 3 g j 4 g j 5

 · fi2 · fi3 · fi4 · fi5

Number of iterations

g =
s∑

j=1

g j 1︸︷︷︸
≥t/5

· g j 2︸︷︷︸
≥t/8

· g j 3 · g j 4 · g j 5

.
Observation..
.In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8?

f =
s∑

i=1

 s∑
j=1

g j 1 g j 2 g j 3 g j 4 g j 5

 · fi2 · fi3 · fi4 · fi5

Number of iterations

g =
s∑

j=1

g j 1︸︷︷︸
≥t/5

· g j 2︸︷︷︸
≥t/8

· g j 3 · g j 4 · g j 5

.
Observation..
.In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8?

f =
s2∑

i=1

fi1 · fi12 · fi3 · fi4 · · · fi9

Number of iterations

g =
s∑

j=1

g j 1︸︷︷︸
≥t/5

· g j 2︸︷︷︸
≥t/8

· g j 3 · g j 4 · g j 5

.
Observation..
.In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8? At most 8d/t .

f =
s2∑

i=1

fi1 · fi12 · fi3 · fi4 · · · fi9

Number of iterations

g =
s∑

j=1

g j 1︸︷︷︸
≥t/5

· g j 2︸︷︷︸
≥t/8

· g j 3 · g j 4 · g j 5

.
Observation..
.In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8? At most 8d/t .

f =
s2∑

i=1

fi1 · fi12 · fi3 · fi4 · · · fi9

Final ΣΠΣΠ[t] circuit has top fan-in at most sO(d/t).

Recap
..

=

.
Theorem..
.Every small circuit can be equivalently computed as a sum of few

.
s

Recap
..

=

.
Theorem..
.Every circuit of size s can be equivalently computed as a sum of few

.
s

Recap
..

=

.
Theorem..

.
Every circuit of size s can be equivalently computed as a sum of sO(d/t)
.
s

Recap
..

=

.
Theorem..

.

Every circuit of size s can be equivalently computed as a sum of sO(d/t)
.
s , where

.
=

O(d/t)∏
i=1

Qi deg(Qi)≤ t

Recap
..

=

.
Theorem..

.

Every circuit of size s can be equivalently computed as a sum of sO(d/t)
.
s , where

.
=

O(d/t)∏
i=1

Qi deg(Qi)≤ t

.
Question..
.What are the

.
s if we start with a homogeneous formula of size s?

Recap
..

=

.
Theorem..

.

Every circuit of size s can be equivalently computed as a sum of sO(d/t)
.
s , where

.
=

O(d/t)∏
i=1

Qi deg(Qi)≤ t

.
Question..
.What are the

.
s if we start with a depth 100 formula of size s?

A better starting point?

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

If we start with a homogeneous formula, can we do better?

A better starting point?

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

If we start with a homogeneous formula, can we do better?
[Hrubes-Yehudayoff]: Yes!
.
Lemma ([Hrubes-Yehudayoff])
..

.
f =

s∑
i=1

fi1 · fi2 · · · fiℓ with
�1

3

� j

· d < deg(fi j)≤
�2

3

� j

· d

A better starting point?

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

If we start with a homogeneous formula, can we do better?
[Hrubes-Yehudayoff]: Yes!
.
Lemma ([Hrubes-Yehudayoff])
..

.
f =

s∑
i=1

fi1 · fi2 · · · fiℓ with
�1

3

� j

· d < deg(fi j)≤
�2

3

� j

· d

.
Proof
..

.

f = A ·Φv + Φv=0

= A ·
 s1∑

i=1

gi1 · · · giℓ

!
+

 s2∑
j=1

h j 1 · · · h jℓ

A better starting point?

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

If we start with a homogeneous formula, can we do better?
[Hrubes-Yehudayoff]: Yes!
.
Lemma ([Hrubes-Yehudayoff])
..

.
f =

s∑
i=1

fi1 · fi2 · · · fiℓ with
�1

3

� j

· d < deg(fi j)≤
�2

3

� j

· d

.
Proof
..

.

f = A ·Φv + Φv=0

= A ·
 s1∑

i=1

gi1 · · · giℓ

!
+

 s2∑
j=1

h j 1 · · · h jℓ

A better starting point?

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

If we start with a homogeneous formula, can we do better?
[Hrubes-Yehudayoff]: Yes!
.
Lemma ([Hrubes-Yehudayoff])
..

.
f =

s∑
i=1

fi1 · fi2 · · · fiℓ with
�1

3

� j

· d < deg(fi j)≤
�2

3

� j

· d
.
Proof
..

.

f =
s∑

i=1

fi1 · · · fiℓ

= A ·
 s1∑

i=1

gi1 · · · giℓ

!
+

 s2∑
j=1

h j 1 · · · h jℓ

Reduction to depth four, again

f =
s∑

i=1

fi1 · · · fiℓ

Reduction to depth four, again

f =
s∑

i=1

fi1 · · · fiℓ

Fact: Each fi j is also computable by size s homogeneous formulas

Reduction to depth four, again

f =
s∑

i=1

fi1 · · · fiℓ

Fact: Each fi j is also computable by size s homogeneous formulas

▶ The above expression is a ΣΠΣΠ[2d/3] circuit. We want a
ΣΠΣΠ[t] circuit.

Reduction to depth four, again

f =
s∑

i=1

fi1 · · · fiℓ

Fact: Each fi j is also computable by size s homogeneous formulas

▶ The above expression is a ΣΠΣΠ[2d/3] circuit. We want a
ΣΠΣΠ[t] circuit.

▶ In each iteration, if the highest degree factor has degree more than
t , expand again.

Reduction to depth four, again

f =
s∑

i=1

fi1 · · · fiℓ

Fact: Each fi j is also computable by size s homogeneous formulas

▶ The above expression is a ΣΠΣΠ[2d/3] circuit. We want a
ΣΠΣΠ[t] circuit.

▶ In each iteration, if the highest degree factor has degree more than
t , expand again.

Question: How many iterations?

Reduction to depth four, again

f =
s∑

i=1

fi1 · · · fiℓ

Fact: Each fi j is also computable by size s homogeneous formulas

▶ The above expression is a ΣΠΣΠ[2d/3] circuit. We want a
ΣΠΣΠ[t] circuit.

▶ In each iteration, if the highest degree factor has degree more than
t , expand again.

Question: How many iterations? O(d/t) again.

Reduction to depth four, again

f =
s∑

i=1

fi1 · · · fiℓ

Fact: Each fi j is also computable by size s homogeneous formulas

▶ The above expression is a ΣΠΣΠ[2d/3] circuit. We want a
ΣΠΣΠ[t] circuit.

▶ In each iteration, if the highest degree factor has degree more than
t , expand again.

Question: How many iterations? O(d/t) again.

Proof: There are at least two terms of degree t/9. Yada Yada Yada

Reduction to depth four, again

f =
s∑

i=1

fi1 · · · fiℓ

Fact: Each fi j is also computable by size s homogeneous formulas

▶ The above expression is a ΣΠΣΠ[2d/3] circuit. We want a
ΣΠΣΠ[t] circuit.

▶ In each iteration, if the highest degree factor has degree more than
t , expand again.

Question: How many iterations? O(d/t) again.

Proof: There are at least two terms of degree t/9. Yada Yada Yada

Yields a ΣΠΣΠ[t] circuit of top fan-in sO(d/t).

Wait... what’s different?
For circuits:

f =
s∑

i=1

fi1 · fi2 · · · fi5

a ΣΠ[O(d/t)]ΣΠ[t] circuit

For homogeneous formulas:

f =
s∑

i=1

fi1 · fi2 · · · fiℓ

a ΣΠ[O(d/t)·log d]ΣΠ[t] circuit
Here,

.
s factorize more

Wait... what’s different?
For circuits:

f =
s∑

i=1

 s∑
j=1

gi1 · · · gi5

 · fi2 · · · fi5

a ΣΠ[O(d/t)]ΣΠ[t] circuit

For homogeneous formulas:

f =
s∑

i=1

 s∑
j=1

gi1 · · · giℓ

 · fi2 · · · fiℓ

a ΣΠ[O(d/t)·log d]ΣΠ[t] circuit
Here,

.
s factorize more

Wait... what’s different?
For circuits:

f =
s2∑

i=1

fi1 · fi2 · · · fi9

a ΣΠ[O(d/t)]ΣΠ[t] circuit

For homogeneous formulas:

f =
s2∑

i=1

fi1 · fi2 · · · fi(2ℓ)

a ΣΠ[O(d/t)·log d]ΣΠ[t] circuit
Here,

.
s factorize more

Wait... what’s different?
For circuits:

f =
s4∑

i=1

fi1 · fi2 · · · fi13

a ΣΠ[O(d/t)]ΣΠ[t] circuit

For homogeneous formulas:

f =
s4∑

i=1

fi1 · fi2 · · · fi(3ℓ)

a ΣΠ[O(d/t)·log d]ΣΠ[t] circuit
Here,

.
s factorize more

Wait... what’s different?
For circuits:

f =
s r∑

i=1

fi1 · fi2 · · · fi(4r+1)

a ΣΠ[O(d/t)]ΣΠ[t] circuit

For homogeneous formulas:

f =
s r∑

i=1

fi1 · fi2 · · · fi(rℓ)

a ΣΠ[O(d/t)·log d]ΣΠ[t] circuit
Here,

.
s factorize more

Wait... what’s different?
For circuits:

f =
s r∑

i=1

fi1 · fi2 · · · fi(4r+1)

a ΣΠ[O(d/t)]ΣΠ[t] circuit

For homogeneous formulas:

f =
s r∑

i=1

fi1 · fi2 · · · fi(rℓ)

a ΣΠ[O(d/t)·log d]ΣΠ[t] circuit

Here,
.
s factorize more

Wait... what’s different?
For circuits:

f =
s r∑

i=1

fi1 · fi2 · · · fi(4r+1)

a ΣΠ[O(d/t)]ΣΠ[t] circuit

For homogeneous formulas:

f =
s r∑

i=1

fi1 · fi2 · · · fi(rℓ)

a ΣΠ[O(d/t)·log d]ΣΠ[t] circuit
Here,

.
s factorize more

Is that a big deal?
Circuit class No. factors of

.
Lower bound

Hom. ΣΠΣ O(n) nΩ(n)

Multilinear formulas O(log n) nΩ(log n)

Multilinear, depth-∆ nO(1/∆) nnΩ(1/∆)

ΣΠΣΠ[t] O(d/t) nΩ(d/t)

Hom. ΣΠΣΠ O(
p

d) nO(
p

d)

Wishful Question: Can we get an nΩ(log n) lower bound for
homogeneous formulas, using current techniques (with slight
modifications)?

Is that a big deal?
Circuit class No. factors of

.
Lower bound

Hom. ΣΠΣ O(n) nΩ(n)

Multilinear formulas O(log n) nΩ(log n)

Multilinear, depth-∆ nO(1/∆) nnΩ(1/∆)

ΣΠΣΠ[t] O(d/t) nΩ(d/t)

Hom. ΣΠΣΠ O(
p

d) nO(
p

d)

Wishful Question: Can we get an nΩ(log n) lower bound for
homogeneous formulas, using current techniques (with slight
modifications)?

Is that a big deal?
Circuit class No. factors of

.
Lower bound

Hom. ΣΠΣ O(n) nΩ(n)

Multilinear formulas O(log n) nΩ(log n)

Multilinear, depth-∆ nO(1/∆) nnΩ(1/∆)

ΣΠΣΠ[t] O(d/t) nΩ(d/t)

Hom. ΣΠΣΠ O(
p

d) nO(
p

d)

Wishful Question: Can we get an nΩ(log n) lower bound for
homogeneous formulas, using current techniques (with slight
modifications)?

Is that a big deal?
Circuit class No. factors of

.
Lower bound

Hom. ΣΠΣ O(n) nΩ(n)

Multilinear formulas O(log n) nΩ(log n)

Multilinear, depth-∆ nO(1/∆) nnΩ(1/∆)

ΣΠΣΠ[t] O(d/t) nΩ(d/t)

Hom. ΣΠΣΠ O(
p

d) nO(
p

d)

Wishful Question: Can we get an nΩ(log n) lower bound for
homogeneous formulas, using current techniques (with slight
modifications)?

Is that a big deal?
Circuit class No. factors of

.
Lower bound

Hom. ΣΠΣ O(n) nΩ(n)

Multilinear formulas O(log n) nΩ(log n)

Multilinear, depth-∆ nO(1/∆) nnΩ(1/∆)

ΣΠΣΠ[t] O(d/t) nΩ(d/t)

Hom. ΣΠΣΠ O(
p

d) nO(
p

d)

Wishful Question: Can we get an nΩ(log n) lower bound for
homogeneous formulas, using current techniques (with slight
modifications)?

Is that a big deal?
Circuit class No. factors of

.
Lower bound

Hom. ΣΠΣ O(n) nΩ(n)

Multilinear formulas O(log n) nΩ(log n)

Multilinear, depth-∆ nO(1/∆) nnΩ(1/∆)

ΣΠΣΠ[t] O(d/t) nΩ(d/t)

Hom. ΣΠΣΠ O(
p

d) nO(
p

d)

Wishful Question: Can we get an nΩ(log n) lower bound for
homogeneous formulas, using current techniques (with slight
modifications)?

Is that a big deal?
Circuit class No. factors of

.
Lower bound

Hom. ΣΠΣ O(n) nΩ(n)

Multilinear formulas O(log n) nΩ(log n)

Multilinear, depth-∆ nO(1/∆) nnΩ(1/∆)

ΣΠΣΠ[t] O(d/t) nΩ(d/t)

Hom. ΣΠΣΠ O(
p

d) nO(
p

d)

Wishful Question: Can we get an nΩ(log n) lower bound for
homogeneous formulas, using current techniques (with slight
modifications)?

Reduction toDepth-3
Circuits

.. No time!

Road map

..∑pd∏∑pd∏
circuits

.

∑pd∧∑pd∧∑
circuits

.

∑∏∑
circuits

.

App. of Ryser’s formula

.

[Saxena]’s duality trick

.

Only overQ,R etc.

.

Heavily non-homogeneous

Road map

..∑pd∏∑pd∏
circuits

.

∑pd∧∑pd∧∑
circuits

.

∑∏∑
circuits

.

App. of Ryser’s formula

.

[Saxena]’s duality trick

.

Only overQ,R etc.

.

Heavily non-homogeneous

Road map

..∑pd∏∑pd∏
circuits

.

∑pd∧∑pd∧∑
circuits

.

∑∏∑
circuits

.

App. of Ryser’s formula

.

[Saxena]’s duality trick

.

Only overQ,R etc.

.

Heavily non-homogeneous

Road map

..∑pd∏∑pd∏
circuits

.

∑pd∧∑pd∧∑
circuits

.

∑∏∑
circuits

.

App. of Ryser’s formula

.

[Saxena]’s duality trick

.

Only overQ,R etc.

.

Heavily non-homogeneous

Step 1: ΣΠΣΠ toΣ∧Σ∧Σ

Step 1: ΣΠΣΠ toΣ∧Σ∧Σ
Recall Ryser’s formula:

Permn

 x11 . . . x1n
...

xn1 . . . xnn

 =
∑

S⊆[n]
(−1)n−|S |

n∏
i=1

∑
j∈S

xi j

Step 1: ΣΠΣΠ toΣ∧Σ∧Σ
Recall Ryser’s formula:

Permn

 x1 . . . xn
...

x1 . . . xn

 =
∑

S⊆[n]
(−1)n−|S |

n∏
i=1

∑
j∈S

x j

Step 1: ΣΠΣΠ toΣ∧Σ∧Σ
Recall Ryser’s formula:

Permn

 x1 . . . xn
...

x1 . . . xn

 =
∑

S⊆[n]
(−1)n−|S |

∑
j∈S

x j

n

Step 1: ΣΠΣΠ toΣ∧Σ∧Σ
Recall Ryser’s formula:

n! · x1 . . . xn =
∑

S⊆[n]
(−1)n−|S |

∑
j∈S

x j

n

Step 1: ΣΠΣΠ toΣ∧Σ∧Σ
[Fischer]:

n! · x1 . . . xn =
∑

S⊆[n]
(−1)n−|S |

∑
j∈S

x j

n

Step 1: ΣΠΣΠ toΣ∧Σ∧Σ
[Fischer]:

n! · x1 . . . xn =
∑

S⊆[n]
(−1)n−|S |

∑
j∈S

x j

n

..

×

.

. . .

.

d

. +.
2d

.

∧

.

∧

.

+

.

d

.

d

.

+

.

. . .

.

. . .

Step 1: ΣΠΣΠ toΣ∧Σ∧Σ
..

×

.

. . .

.

d

. +.
2d

.

∧

.

∧

.

+

.

d

.

d

.

+

.

. . .

.

. . .

d∏ −→
2d∑ d∧ d∑

Step 1: ΣΠΣΠ toΣ∧Σ∧Σ
..

×

.

. . .

.

d

. +.
2d

.

∧

.

∧

.

+

.

d

.

d

.

+

.

. . .

.

. . .

d∏ −→
2d∑ d∧ d∑

∑ p
d∏∑ p

d∏
of size s −→ ∑p

d∧∑p
d∧∑

of size 2O(
p

d) · s

Road map

..∑pd∏∑pd∏
circuits

.

∑pd∧∑pd∧∑
circuits

.

∑∏∑
circuits

Road map

..∑pd∏∑pd∏
circuits

.

∑pd∧∑pd∧∑
circuits

.

✓

.

∑∏∑
circuits

Step 2: Σ∧Σ∧Σ toΣΠΣ

∑ p
d∧∑ p

d∧∑

Step 2: Σ∧Σ∧Σ toΣΠΣ

∑ p
d∧∑ p

d∧∑

ℓ

Step 2: Σ∧Σ∧Σ toΣΠΣ

∑ p
d∧∑ p

d∧∑

ℓ
p

d

Step 2: Σ∧Σ∧Σ toΣΠΣ

∑ p
d∧∑ p

d∧∑

ℓ
p

d
1 + . . . + ℓ

p
d

s

Step 2: Σ∧Σ∧Σ toΣΠΣ

∑ p
d∧∑ p

d∧∑

�
ℓ
p

d
1 + . . . + ℓ

p
d

s

�pd

Step 2: Σ∧Σ∧Σ toΣΠΣ

∑ p
d∧∑ p

d∧∑

∑
i

�
ℓ
p

d
i1 + . . . + ℓ

p
d

i s

�pd

Step 2: Σ∧Σ∧Σ toΣΠΣ

C =
∑

i

�
ℓ
p

d
i1 + · · ·+ ℓ

p
d

i s

�pd

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

.
Lemma ([Saxena])..

.

There exists univariate polynomials fi j ’s of degree at most d such that

(x1+ · · ·+ xs)
d =

s d+1∑
i=1

s∏
j=1

fi j (x j)

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

.
Lemma ([Saxena])..

.

There exists univariate polynomials fi j ’s of degree at most d such that

(x1+ · · ·+ xs)
d =

s d+1∑
i=1

s∏
j=1

fi j (x j)

.
Sketch of a proof by Shpilka
..

.

Px(t) = (1+ x1 t) . . . (1+ xs t) = 1+ ℓt + (higher degree terms)

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

.
Lemma ([Saxena])..

.

There exists univariate polynomials fi j ’s of degree at most d such that

(x1+ · · ·+ xs)
d =

s d+1∑
i=1

s∏
j=1

fi j (x j)

.
Sketch of a proof by Shpilka
..

.

Px(t)− 1 = ℓt + (higher degree terms)

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

.
Lemma ([Saxena])..

.

There exists univariate polynomials fi j ’s of degree at most d such that

(x1+ · · ·+ xs)
d =

s d+1∑
i=1

s∏
j=1

fi j (x j)

.
Sketch of a proof by Shpilka
..

.

(Px(t)− 1)d = ℓd t d + (higher degree terms)

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

.
Lemma ([Saxena])..

.

There exists univariate polynomials fi j ’s of degree at most d such that

(x1+ · · ·+ xs)
d =

s d+1∑
i=1

s∏
j=1

fi j (x j)

.
Sketch of a proof by Shpilka
..

.

(Px(t)− 1)d = ℓd t d + (higher degree terms)

Interpolate!
(Px(t)− 1)d expanded is a sum of (d + 1) product of univariates.

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

�
x1+ · · ·+ xs

�pd =
poly(s ,d)∑

i

s∏
j=1

fi j

�
x j

�

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd
=

poly(s ,d)∑
i

s∏
j=1

fi j

�
ℓ
p

d
j

�

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd
=

poly(s ,d)∑
i

s∏
j=1

fi j

�
ℓ
p

d
j

�
=

poly(s ,d)∑
i

s∏
j=1

f̃i j (ℓ j)

where f̃i j (t) := fi j (t
p

d)

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd
=

poly(s ,d)∑
i

s∏
j=1

fi j

�
ℓ
p

d
j

�
=

poly(s ,d)∑
i

s∏
j=1

f̃i j (ℓ j)

Note that f̃i j (t) is a univariate polynomial

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd
=

poly(s ,d)∑
i

s∏
j=1

fi j

�
ℓ
p

d
j

�
=

poly(s ,d)∑
i

s∏
j=1

f̃i j (ℓ j)

Note that f̃i j (t) is a univariate polynomial that can be factorized overC:

f̃i j (t) =
d∏

k=1

(t − ζi j k)

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd
=

poly(s ,d)∑
i

s∏
j=1

fi j

�
ℓ
p

d
j

�
=

poly(s ,d)∑
i

s∏
j=1

f̃i j (ℓ j)

Note that f̃i j (t) is a univariate polynomial that can be factorized overC:

f̃i j (ℓ j) =
d∏

k=1

(ℓ j − ζi j k)

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd
=

poly(s ,d)∑
i

s∏
j=1

fi j

�
ℓ
p

d
j

�
=

poly(s ,d)∑
i

s∏
j=1

f̃i j (ℓ j)

=
poly(s ,d)∑

i

s∏
j=1

d∏
k=1

�
ℓ j − ζi j k

�

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd
=

poly(s ,d)∑
i

s∏
j=1

fi j

�
ℓ
p

d
j

�
=

poly(s ,d)∑
i

s∏
j=1

f̃i j (ℓ j)

=
poly(s ,d)∑

i

s∏
j=1

d∏
k=1

�
ℓ j − ζi j k

�
... a ΣΠΣ circuit of poly(s , d) size.

Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd
=

poly(s ,d)∑
i

s∏
j=1

fi j

�
ℓ
p

d
j

�
=

poly(s ,d)∑
i

s∏
j=1

f̃i j (ℓ j)

=
poly(s ,d)∑

i

s∏
j=1

d∏
k=1

�
ℓ j − ζi j k

�
... a ΣΠΣ circuit of poly(s , d) size and degree s d .

Putting it together

..general circuit
of size s

.
∑pd∏∑pd∏

circuit
of size sO(

p
d)

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d)

.

∑∏∑
circuits

of size sO(
p

d)

Putting it together

..general circuit
of size s

.
∑pd∏∑pd∏

circuit
of size sO(

p
d)

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d)

.

∑∏∑
circuits

of size sO(
p

d)

Putting it together

..general circuit
of size s

.
∑pd∏∑pd∏

circuit
of size sO(

p
d)

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d) · 2O(
p

d)

.

∑∏∑
circuits

of size sO(
p

d)

Putting it together

..general circuit
of size s

.
∑pd∏∑pd∏

circuit
of size sO(

p
d)

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d)

.

∑∏∑
circuits

of size sO(
p

d)

Putting it together

..general circuit
of size s

.
∑pd∏∑pd∏

circuit
of size sO(

p
d)

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d)

.

∑∏∑
circuits

of size sO(
p

d)

Putting it together

..general circuit
of size s

.
∑pd∏∑pd∏

circuit
of size sO(

p
d)

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d)

.

∑∏∑
circuits

of size sO(
p

d)

Question: Where should one try to prove lower bounds?

Putting it together

..general hom. circuit
of size s

.
∑pd∏∑pd∏

circuit
of size sO(

p
d)

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d)

.

∑∏∑
circuits

of size sO(
p

d)

Question: Where should one try to prove lower bounds?

Putting it together

..general hom. circuit
of size s

.
∑pd∏∑pd∏

hom. circuit
of size sO(

p
d)

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d)

.

∑∏∑
circuits

of size sO(
p

d)

Question: Where should one try to prove lower bounds?

Putting it together

..general hom. circuit
of size s

.
∑pd∏∑pd∏

hom. circuit
of size sO(

p
d)

.

∑pd∧∑pd∧∑
hom. circuits

of size sO(
p

d)

.

∑∏∑
circuits

of size sO(
p

d)

Question: Where should one try to prove lower bounds?

Putting it together

..general hom. circuit
of size s

.
∑pd∏∑pd∏

hom. circuit
of size sO(

p
d)

.

∑pd∧∑pd∧∑
hom. circuits

of size sO(
p

d)

.

∑∏∑
non-hom. circuits

of size sO(
p

d)

Question: Where should one try to prove lower bounds?

Putting it together

..general hom. circuit
of size s

.
∑pd∏∑pd∏

hom. circuit
of size sO(

p
d)

.

∑pd∧∑pd∧∑
hom. circuits

of size sO(
p

d)

.

∑∏∑
non-hom. circuits

of size sO(
p

d)

Question: Where should one try to prove lower bounds?

Summary

▶ Depth reduction can manifest in many forms. Finding the right
building block is sometimes crucial.

▶ A slightly different proof of [Tavenas] yields a possible useful
building block for homogeneous formulas with more factors.

▶ Maybe we can get nΩ(log n) lower bounds via modified
shifted-partials.

▶ Can we say something similar about ΣΠΣΠ[t] circuits obtained
from ABPs?

.
Call for contributors
..

.
A git survey on arithmetic circuit lower bounds:
https://github.com/dasarpmar/lowerbounds-survey/

Dankeschön

https://github.com/dasarpmar/lowerbounds-survey/

