
Depth reduction in
arithmetic circuits

Ramprasad Saptharishi
Tel Aviv University

WACT
March 2015, Saarbrücken



Polynomials

f (x1, x2, x3, x4) = 1+ x1+ x2+ x3+ x4

+ x1x2+ x1x3+ x1x4+ x2x3+ x2x4+ x3x4

+ x2x3x4+ x1x3x4+ x1x2x4+ x1x2x3

+ x1x2x3x4



Polynomials

f (x1, x2, x3, x4) = 1+ x1+ x2+ x3+ x4

+ x1x2+ x1x3+ x1x4+ x2x3+ x2x4+ x3x4

+ x2x3x4+ x1x3x4+ x1x2x4+ x1x2x3

+ x1x2x3x4

f (x1, x2, x3, x4) = (1+ x1)(1+ x2)(1+ x3)(1+ x4)

“How hard is it to compute a given n-variate degree d polynomial?”
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▶ Tree
▶ Leaves containing variables or constants
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Arithmetic Branching Programs

.......................

A directed layered graph with a unique source node s and sink node t .
Each edge e holds a linear polynomial ℓe .

Computes f =
∑

P :s⇝t

wt(P )

Equivalent to iterated matrix product
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Homogenization
“Thou shalt not compute polynomials of larger degree than thou needst”

▶ All gates compute homogeneous polynomials.
▶ Hence, no gate can compute polynomials of degree larger than

output.
▶ For circuits and ABPs, homogeneity can be assumed without loss of

generality. For formulas, probably not.For constant depth formulas,
certainly not.

g = g1+ g2 −→ g (i) = g (i)1 + g (i)2

g = g1× g2 −→ g (i) =
i∑

j=0

g ( j )1 × g (i− j )
2



Homogenization
“Thou shalt not compute polynomials of larger degree than thou needst”

▶ All gates compute homogeneous polynomials.

▶ Hence, no gate can compute polynomials of degree larger than
output.

▶ For circuits and ABPs, homogeneity can be assumed without loss of
generality. For formulas, probably not.For constant depth formulas,
certainly not.

g = g1+ g2 −→ g (i) = g (i)1 + g (i)2

g = g1× g2 −→ g (i) =
i∑

j=0

g ( j )1 × g (i− j )
2



Homogenization
“Thou shalt not compute polynomials of larger degree than thou needst”

▶ All gates compute homogeneous polynomials.
▶ Hence, no gate can compute polynomials of degree larger than

output.

▶ For circuits and ABPs, homogeneity can be assumed without loss of
generality. For formulas, probably not.For constant depth formulas,
certainly not.

g = g1+ g2 −→ g (i) = g (i)1 + g (i)2

g = g1× g2 −→ g (i) =
i∑

j=0

g ( j )1 × g (i− j )
2



Homogenization
“Thou shalt not compute polynomials of larger degree than thou needst”

▶ All gates compute homogeneous polynomials.
▶ Hence, no gate can compute polynomials of degree larger than

output.
▶ For circuits and ABPs, homogeneity can be assumed without loss of

generality.

For formulas, probably not.For constant depth formulas,
certainly not.

g = g1+ g2 −→ g (i) = g (i)1 + g (i)2

g = g1× g2 −→ g (i) =
i∑

j=0

g ( j )1 × g (i− j )
2



Homogenization
“Thou shalt not compute polynomials of larger degree than thou needst”

▶ All gates compute homogeneous polynomials.
▶ Hence, no gate can compute polynomials of degree larger than

output.
▶ For circuits and ABPs, homogeneity can be assumed without loss of

generality. For formulas, probably not.

For constant depth formulas,
certainly not.

g = g1+ g2 −→ g (i) = g (i)1 + g (i)2

g = g1× g2 −→ g (i) =
i∑

j=0

g ( j )1 × g (i− j )
2



Homogenization
“Thou shalt not compute polynomials of larger degree than thou needst”

▶ All gates compute homogeneous polynomials.
▶ Hence, no gate can compute polynomials of degree larger than

output.
▶ For circuits and ABPs, homogeneity can be assumed without loss of

generality. For formulas, probably not.For constant depth formulas,
certainly not.

g = g1+ g2 −→ g (i) = g (i)1 + g (i)2

g = g1× g2 −→ g (i) =
i∑

j=0

g ( j )1 × g (i− j )
2



Homogenization
“Thou shalt not compute polynomials of larger degree than thou needst”

▶ All gates compute homogeneous polynomials.
▶ Hence, no gate can compute polynomials of degree larger than

output.
▶ For circuits and ABPs, homogeneity can be assumed without loss of

generality. For formulas, probably not.For constant depth formulas,
certainly not.

g = g1+ g2 −→ g (i) = g (i)1 + g (i)2

g = g1× g2 −→ g (i) =
i∑

j=0

g ( j )1 × g (i− j )
2



The illustrious siblings

Detn(x11, . . . , xnn) =
∑
σ∈Sn

sign(σ) · x1σ(1) . . . xnσ(n)
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∑
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Step 1: Finding the right building blocks
.
Meta Theorem 1..
.Every small circuit can be equivalently computed as a sum of few

.
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Step 2: Constructing a complexity measure
.
Meta Theorem 2..
.Find a map Γ : F[x]→Z≥0 such that Γ

� . �
is small.

Step 3: Heuristic estimate for a random polynomial
.
Meta Theorem 2..

.
Convince yourself that Γ(R) must be LARGE for a random polynomial
R.

Step 4: Find a hay in the haystack
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A short history of depth reduction
Circuit Class Depth Size

Formulas O(log s) poly(s) [Brent]

Circuits O(log d ) s log s [Hyafil]
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.
Multilinear formulas [Raz, Raz-Yehudayoff]
..

.
f =

s∑
i=1

gi1 · gi2 . . . giℓ , (1/3) j · n ≤ Var(gi j ) ≤ (2/3) j · n

.
Homogeneous formulas [Hrubes-Yehudayoff]
..

.
f =

s∑
i=1

gi1 · gi2 . . . giℓ , (1/3) j · d ≤ deg(gi j ) ≤ (2/3) j · d

.
HomogeneousΣΠΣΠ [Kayal-Limaye-Saha-Srinivasan]
..

.
f = ΣΠΣΠ[

p
d] +

s∑
i=1

mi Qi , deg(mi )≥
p

d



Plan

▶ Classical depth reductions of [Brent] and [VSBR].

▶ A slightly different proof of [Tavenas]

▶ Better building blocks for homogeneous formulas

▶ (depending on time) Reduction to depth three [GKKS2]
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z

.
Φ2

Φ1(z) = A · z + B
Φ = A ·Φ2 + B = (Φ1(1)−Φ1(0)) ·Φ2 + Φ1(0)
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d
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.

Multiple paths from root!



Adapting to circuits: Attempt 1

..Φ



Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«



Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j



Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

each have degree at most 2d/3



Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

each have degree at most 2d/3
Interpolate!



Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

Depth(d ) = Depth(2d/3)+O(1)



Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

Depth(d ) = O(log d )



Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

Depth(d ) = O(log d )
Size(s , d ) = ?



Adapting to circuits: Attempt 1

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

Depth(d ) = O(log d )

Size(s , d ) = sO(log d )



Adapting to circuits: [Hyafil]

..Φ.
Degree> 2d/3

.

Degree≤ d/3

.

F

F =
¨

v ∈Φ :
d

3
< deg(v)≤ 2d

3

«
Φ =

∑
vi∈F

AiΦvi
+

∑
vi ,v j∈F

Ai , jΦvi
Φv j

Depth(d ) = O(log d )

Size(s , d ) = sO(log d )



Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .

Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]



Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .
▶ Problem is that there are multiple paths to v .

Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]



Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .
▶ Problem is that there are multiple paths to v .
Φ isn’t really a linear function in Φv .

Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]



Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .
▶ Problem is that there are multiple paths to v .
Φ isn’t really a linear function in Φv .

[VSBR]: Do not look at all paths. Only take a canonical path, like say
taking the right-edge out of every×-gate.

Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]



Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .
▶ Problem is that there are multiple paths to v .
Φ isn’t really a linear function in Φv .

[VSBR]: Do not look at all paths. Only take a canonical path, like say
taking the right-edge out of every×-gate. More like “suffixes”

Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]



Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .
▶ Problem is that there are multiple paths to v .
Φ isn’t really a linear function in Φv .

[VSBR]: Do not look at all paths. Only take a canonical path, like say
taking the right-edge out of every×-gate. More like “suffixes”

[u : v] =


0 if u is a leaf
1 if u = v
[u1 : v]+ [u2 : v] if u = u1+ u2

[u1] · [u2 : v] if u1 = u1× u2

Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]



Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .
▶ Problem is that there are multiple paths to v .
Φ isn’t really a linear function in Φv .

[VSBR]: Do not look at all paths. Only take a canonical path, like say
taking the right-edge out of every×-gate. More like “suffixes”

[u : v] =


0 if u is a leaf
1 if u = v
[u1 : v]+ [u2 : v] if u = u1+ u2

[u1] · [u2 : v] if u1 = u1× u2

Another possibility: Partial Derivatives.

Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]



Adapting to circuits: Attempt 2
▶ Want an analogue of Φ=A ·Φv +B .
▶ Problem is that there are multiple paths to v .
Φ isn’t really a linear function in Φv .

[VSBR]: Do not look at all paths. Only take a canonical path, like say
taking the right-edge out of every×-gate. More like “suffixes”

[u : v] =


0 if u is a leaf
1 if u = v
[u1 : v]+ [u2 : v] if u = u1+ u2

[u1] · [u2 : v] if u1 = u1× u2

Another possibility: Partial Derivatives.
Works, but one needs to be a little careful with multiple paths. See
[Shpilka-Yehudayoff]



An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] =

[v2 : v8] +
= [v4] · [v5 : v8]
= (x1x2+ x2x3) · [v5 : v8]
= (x1x2+ x2x3) · ([v8 : v8]+ )
= (x1x2+ x2x3)



An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] = [v2 : v8] + [v3 : v8]

= [v4] · [v5 : v8]
= (x1x2+ x2x3) · [v5 : v8]
= (x1x2+ x2x3) · ([v8 : v8]+ )
= (x1x2+ x2x3)



An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] = [v2 : v8] + ����[v3 : v8]

= [v4] · [v5 : v8]
= (x1x2+ x2x3) · [v5 : v8]
= (x1x2+ x2x3) · ([v8 : v8]+ )
= (x1x2+ x2x3)



An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] = [v2 : v8] + ����[v3 : v8]
= [v4] · [v5 : v8]

= (x1x2+ x2x3) · [v5 : v8]
= (x1x2+ x2x3) · ([v8 : v8]+ )
= (x1x2+ x2x3)



An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] = [v2 : v8] + ����[v3 : v8]
= [v4] · [v5 : v8]
= (x1x2+ x2x3) · [v5 : v8]

= (x1x2+ x2x3) · ([v8 : v8]+ )
= (x1x2+ x2x3)



An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] = [v2 : v8] + ����[v3 : v8]
= [v4] · [v5 : v8]
= (x1x2+ x2x3) · [v5 : v8]
= (x1x2+ x2x3) · ([v8 : v8]+ [v9 : v8])

= (x1x2+ x2x3)



An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] = [v2 : v8] + ����[v3 : v8]
= [v4] · [v5 : v8]
= (x1x2+ x2x3) · [v5 : v8]
= (x1x2+ x2x3) · ([v8 : v8]+����[v9 : v8])

= (x1x2+ x2x3)



An example
..+.

×

.

×

.

+

.

+

.

+

.

×

.

×

.

×

.

×

.

x1

.

x2

.

x3

.

x4

.

x5

. v1.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

.

v9

.

v10

[v1 : v8] = [v2 : v8] + ����[v3 : v8]
= [v4] · [v5 : v8]
= (x1x2+ x2x3) · [v5 : v8]
= (x1x2+ x2x3) · ([v8 : v8]+����[v9 : v8])
= (x1x2+ x2x3)



[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ?



[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ?

Every “right-path” must pass through exactly
one v ∈F

..×.

+

.

+

.

×

.

×



[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ? Every “right-path” must pass through exactly
one v ∈F

..×.

+

.

+

.

×

.

×



[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ? Every “right-path” must pass through exactly
one v ∈F

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}



[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ? Every “right-path” must pass through exactly
one v ∈F

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

..×.

+

.

10

. 100.

+

.

90

.

×

.

×



[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ? Every “right-path” must pass through exactly
one v ∈F

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

..×.

+

.

10

. 100.

+

.

90

.

×

.

×

Make the circuit right heavy.



[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ? Every “right-path” must pass through exactly
one v ∈F

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}
.Lemma..

.
[u] =

∑
v∈Fa

[u : v] · [v]



[VSBR] continued ...
We want a set of nodesF such that

[u] =
∑
v∈F
[u : v] · [v]

What are candidates forF ? Every “right-path” must pass through exactly
one v ∈F

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}
.Lemma..

.

[u] =
∑

v∈Fa

[u : v] · [v]

[u : w] =
∑

v∈Fa

[u : v] · [v : w]



[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [v]



[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR]



[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2



[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2



[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2



[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2



[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [v : w]

a =
deg(u)+ deg(w)

2



[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [vL] · [vR : w]

a =
deg(u)+ deg(w)

2



[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [vL] · [vR : w] a =
deg(u)+ deg(w)

2



[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [vL] · [vR : w] a =
deg(u)+ deg(w)

2



[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [vL] · [vR : w] a =
deg(u)+ deg(w)

2



[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [vL] · [vR : w] a =
deg(u)+ deg(w)

2

=
∑

a∈Fa

[u : v] ·
∑

q∈Fa

[vL : q] · [qL] · [qR]

 · [vR : w]



[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [vL] · [vR : w] a =
deg(u)+ deg(w)

2

=
∑

a∈Fa

[u : v] ·
∑

q∈Fa

[vL : q] · [qL] · [qR]

 · [vR : w]



[VSBR] continued ...

Fa = {v : deg(v)≥ a , deg(vL), deg(vR)< a}

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR] a = deg(u)/2

[u : w] =
∑

v∈Fa

[u : v] · [vL] · [vR : w] a =
deg(u)+ deg(w)

2

=
∑

a∈Fa

[u : v] ·
∑

q∈Fa

[vL : q] · [qL] · [qR]

 · [vR : w]



Summarizing

[u] =
∑

v∈Fa

[u : v] · [vL] · [vR]

[u : w] =
∑

v∈Fa

∑
q∈Fa

[u : v] · [v : q] · [qL] · [qR] · [vR : w]

.
Theorem ([Valiant-Skyum-Berkowitz-Rackoff])
..

.
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▶ Every gate of Φ′ computes some [u : v],
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▶ All multiplication gates have fan-in at most 5, and
▶ If v1 is a child of a×-gate v in Φ′, then deg(v1)≤ deg(v)/2.

Hence, the depth of Φ′ is O(log d ).
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A different perspective
Let’s start with [VSBR]

f =
s4∑

i=1

fi1 · · · fi17

This is a ΣΠΣΠ[d/2] circuit. We want to obtain a ΣΠΣΠ[t] circuit.
Each fi j is also some [u : v]. Keep expanding terms of degree more than
t .

How many iterations until all degrees are at most t?
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.
Observation..
.In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8? At most 8d/t .

f =
s2∑

i=1

fi1 · fi12 · fi3 · fi4 · · · fi9

Final ΣΠΣΠ[t] circuit has top fan-in at most sO(d/t ).
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.
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.
s if we start with a depth 100 formula of size s?



A better starting point?

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

If we start with a homogeneous formula, can we do better?



A better starting point?

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

If we start with a homogeneous formula, can we do better?
[Hrubes-Yehudayoff]: Yes!
.
Lemma ([Hrubes-Yehudayoff])
..

.
f =

s∑
i=1

fi1 · fi2 · · · fiℓ with
�1

3

� j

· d < deg( fi j )≤
�2

3

� j

· d



A better starting point?

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

If we start with a homogeneous formula, can we do better?
[Hrubes-Yehudayoff]: Yes!
.
Lemma ([Hrubes-Yehudayoff])
..

.
f =

s∑
i=1

fi1 · fi2 · · · fiℓ with
�1

3

� j

· d < deg( fi j )≤
�2

3

� j

· d

.
Proof
..

.

f = A ·Φv + Φv=0

= A ·
 s1∑

i=1

gi1 · · · giℓ

!
+

 s2∑
j=1

h j 1 · · · h jℓ





A better starting point?

f =
s∑

i=1

fi1 · fi2 · fi3 · fi4 · fi5

If we start with a homogeneous formula, can we do better?
[Hrubes-Yehudayoff]: Yes!
.
Lemma ([Hrubes-Yehudayoff])
..

.
f =

s∑
i=1

fi1 · fi2 · · · fiℓ with
�1

3

� j

· d < deg( fi j )≤
�2

3

� j

· d

.
Proof
..

.

f = A ·Φv + Φv=0

= A ·
 s1∑

i=1

gi1 · · · giℓ

!
+

 s2∑
j=1

h j 1 · · · h jℓ





A better starting point?

f =
s∑
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Reduction to depth four, again

f =
s∑

i=1

fi1 · · · fiℓ

Fact: Each fi j is also computable by size s homogeneous formulas

▶ The above expression is a ΣΠΣΠ[2d/3] circuit. We want a
ΣΠΣΠ[t] circuit.

▶ In each iteration, if the highest degree factor has degree more than
t , expand again.

Question: How many iterations? O(d/t ) again.

Proof: There are at least two terms of degree t/9. Yada Yada Yada

Yields a ΣΠΣΠ[t] circuit of top fan-in sO(d/t ).
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Is that a big deal?
Circuit class No. factors of

.
Lower bound

Hom. ΣΠΣ O(n) nΩ(n)

Multilinear formulas O(log n) nΩ(log n)

Multilinear, depth-∆ nO(1/∆) nnΩ(1/∆)

ΣΠΣΠ[t] O(d/t ) nΩ(d/t )

Hom. ΣΠΣΠ O(
p

d ) nO(
p

d )

Wishful Question: Can we get an nΩ(log n) lower bound for
homogeneous formulas, using current techniques (with slight
modifications)?
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Reduction toDepth-3
Circuits

.. No time!



Road map

..∑pd∏∑pd∏
circuits

.

∑pd∧∑pd∧∑
circuits

.

∑∏∑
circuits

.

App. of Ryser’s formula

.

[Saxena]’s duality trick

.

Only overQ,R etc.

.

Heavily non-homogeneous



Road map

..∑pd∏∑pd∏
circuits

.

∑pd∧∑pd∧∑
circuits

.

∑∏∑
circuits

.

App. of Ryser’s formula

.

[Saxena]’s duality trick

.

Only overQ,R etc.

.

Heavily non-homogeneous



Road map

..∑pd∏∑pd∏
circuits

.

∑pd∧∑pd∧∑
circuits

.

∑∏∑
circuits

.

App. of Ryser’s formula

.

[Saxena]’s duality trick

.

Only overQ,R etc.

.

Heavily non-homogeneous



Road map

..∑pd∏∑pd∏
circuits

.

∑pd∧∑pd∧∑
circuits

.

∑∏∑
circuits

.

App. of Ryser’s formula

.

[Saxena]’s duality trick

.

Only overQ,R etc.

.

Heavily non-homogeneous



Step 1: ΣΠΣΠ toΣ∧Σ∧Σ



Step 1: ΣΠΣΠ toΣ∧Σ∧Σ
Recall Ryser’s formula:

Permn

 x11 . . . x1n
... . . . ...

xn1 . . . xnn

 =
∑

S⊆[n]
(−1)n−|S |

n∏
i=1

∑
j∈S

xi j



Step 1: ΣΠΣΠ toΣ∧Σ∧Σ
Recall Ryser’s formula:

Permn

 x1 . . . xn
... . . . ...

x1 . . . xn

 =
∑

S⊆[n]
(−1)n−|S |

n∏
i=1

∑
j∈S

x j



Step 1: ΣΠΣΠ toΣ∧Σ∧Σ
Recall Ryser’s formula:

Permn

 x1 . . . xn
... . . . ...

x1 . . . xn

 =
∑

S⊆[n]
(−1)n−|S |

∑
j∈S

x j

n



Step 1: ΣΠΣΠ toΣ∧Σ∧Σ
Recall Ryser’s formula:

n! · x1 . . . xn =
∑

S⊆[n]
(−1)n−|S |

∑
j∈S

x j

n



Step 1: ΣΠΣΠ toΣ∧Σ∧Σ
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Lemma ([Saxena])..

.

There exists univariate polynomials fi j ’s of degree at most d such that
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d =
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fi j (x j )
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Lemma ([Saxena])..

.

There exists univariate polynomials fi j ’s of degree at most d such that

(x1+ · · ·+ xs )
d =

s d+1∑
i=1

s∏
j=1

fi j (x j )

.
Sketch of a proof by Shpilka
..

.

(Px(t )− 1)d = ℓd t d + (higher degree terms)

Interpolate!
(Px(t )− 1)d expanded is a sum of (d + 1) product of univariates.
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Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd
=

poly(s ,d )∑
i

s∏
j=1

fi j

�
ℓ
p

d
j

�
=

poly(s ,d )∑
i

s∏
j=1

f̃i j (ℓ j )

Note that f̃i j (t ) is a univariate polynomial that can be factorized overC:

f̃i j (t ) =
d∏

k=1

(t − ζi j k )



Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd
=

poly(s ,d )∑
i

s∏
j=1

fi j

�
ℓ
p

d
j

�
=

poly(s ,d )∑
i

s∏
j=1

f̃i j (ℓ j )

Note that f̃i j (t ) is a univariate polynomial that can be factorized overC:

f̃i j (ℓ j ) =
d∏

k=1

(ℓ j − ζi j k )



Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd
=

poly(s ,d )∑
i

s∏
j=1

fi j

�
ℓ
p

d
j

�
=

poly(s ,d )∑
i

s∏
j=1

f̃i j (ℓ j )

=
poly(s ,d )∑

i

s∏
j=1

d∏
k=1

�
ℓ j − ζi j k

�



Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd
=

poly(s ,d )∑
i

s∏
j=1

fi j

�
ℓ
p

d
j

�
=

poly(s ,d )∑
i

s∏
j=1

f̃i j (ℓ j )

=
poly(s ,d )∑

i

s∏
j=1

d∏
k=1

�
ℓ j − ζi j k

�
... a ΣΠΣ circuit of poly(s , d ) size.



Step 2: Σ∧Σ∧Σ toΣΠΣ

T =
�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd

�
ℓ
p

d
1 + · · ·+ ℓ

p
d

s

�pd
=

poly(s ,d )∑
i

s∏
j=1

fi j

�
ℓ
p

d
j

�
=

poly(s ,d )∑
i

s∏
j=1

f̃i j (ℓ j )

=
poly(s ,d )∑

i

s∏
j=1

d∏
k=1

�
ℓ j − ζi j k

�
... a ΣΠΣ circuit of poly(s , d ) size and degree s d .



Putting it together

..general circuit
of size s

.
∑pd∏∑pd∏

circuit
of size sO(

p
d )

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d )

.

∑∏∑
circuits

of size sO(
p

d )



Putting it together

..general circuit
of size s

.
∑pd∏∑pd∏

circuit
of size sO(

p
d )

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d )

.

∑∏∑
circuits

of size sO(
p

d )



Putting it together

..general circuit
of size s

.
∑pd∏∑pd∏

circuit
of size sO(

p
d )

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d ) · 2O(
p

d )

.

∑∏∑
circuits

of size sO(
p

d )



Putting it together

..general circuit
of size s

.
∑pd∏∑pd∏

circuit
of size sO(

p
d )

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d )

.

∑∏∑
circuits

of size sO(
p

d )



Putting it together

..general circuit
of size s

.
∑pd∏∑pd∏

circuit
of size sO(

p
d )

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d )

.

∑∏∑
circuits

of size sO(
p

d )



Putting it together

..general circuit
of size s

.
∑pd∏∑pd∏

circuit
of size sO(

p
d )

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d )

.

∑∏∑
circuits

of size sO(
p

d )

Question: Where should one try to prove lower bounds?



Putting it together

..general hom. circuit
of size s

.
∑pd∏∑pd∏

circuit
of size sO(

p
d )

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d )

.

∑∏∑
circuits

of size sO(
p

d )

Question: Where should one try to prove lower bounds?



Putting it together

..general hom. circuit
of size s

.
∑pd∏∑pd∏

hom. circuit
of size sO(

p
d )

.

∑pd∧∑pd∧∑
circuits

of size sO(
p

d )

.

∑∏∑
circuits

of size sO(
p

d )

Question: Where should one try to prove lower bounds?



Putting it together

..general hom. circuit
of size s

.
∑pd∏∑pd∏

hom. circuit
of size sO(

p
d )

.

∑pd∧∑pd∧∑
hom. circuits

of size sO(
p

d )

.

∑∏∑
circuits

of size sO(
p

d )

Question: Where should one try to prove lower bounds?



Putting it together

..general hom. circuit
of size s

.
∑pd∏∑pd∏

hom. circuit
of size sO(

p
d )

.

∑pd∧∑pd∧∑
hom. circuits

of size sO(
p

d )

.

∑∏∑
non-hom. circuits

of size sO(
p

d )

Question: Where should one try to prove lower bounds?



Putting it together

..general hom. circuit
of size s

.
∑pd∏∑pd∏

hom. circuit
of size sO(

p
d )

.

∑pd∧∑pd∧∑
hom. circuits

of size sO(
p

d )

.

∑∏∑
non-hom. circuits

of size sO(
p

d )

Question: Where should one try to prove lower bounds?



Summary

▶ Depth reduction can manifest in many forms. Finding the right
building block is sometimes crucial.

▶ A slightly different proof of [Tavenas] yields a possible useful
building block for homogeneous formulas with more factors.

▶ Maybe we can get nΩ(log n) lower bounds via modified
shifted-partials.

▶ Can we say something similar about ΣΠΣΠ[t] circuits obtained
from ABPs?



.
Call for contributors
..

.
A git survey on arithmetic circuit lower bounds:
https://github.com/dasarpmar/lowerbounds-survey/

Dankeschön

https://github.com/dasarpmar/lowerbounds-survey/

