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Abstract

We present a polynomial time factor 0.999-logn approx-
imation algorithm for the asymmetric traveling salesper-
son problem with triangle inequality.

1 Introduction

The traveling salesperson problem is one of the most
important NP optimization problems. Given a directed
or undirected complete loopless graph G with node
set V and a weight function w assigning each edge
a nonnegative weight, our goal is to find a minimum
weight Hamiltonian cycle, i.e., a cycle that visits each
node exactly once. Since most variants of the traveling
salesperson problem are NP-hard, much effort has been
spent on designing approximation algorithms for this
problem.

If w is an arbitrary weight function, then the
problem is NPO-complete (see e.g. [19] for definitions).
Thus, there is no good approximation algorithm, unless
P = NP. A natural restriction is that w should satisfy
the (directed) triangle inequality
(1) w(u,v) <w(u,z) +w(z,v)

for all pairwise distinct u,v,z € V.

We call the corresponding minimization problem
A-ATSP for directed graphs (also called the asymmet-
ric case) and A-TSP for undirected graphs. The lat-
ter problem is of course a special case of the former,
since we require w also to be symmetric. For A-TSP,
there is a polynomial time factor 3 approximation al-
gorithm due to Christofides [7]. For A-ATSP, the ap-
proximation performance of the best polynomial time
approximation algorithm known today is logn (where
n = |V]), as shown by Frieze, Galbiati, and Maffioli [9].
(Here and in the following, all logarithms are to base 2.)
We stress that the bound on the approximation perfor-
mance by Frieze, Galbiati, and Maffioli is exactly 1-logn
and not only O(logn). Since this result by Frieze, Gal-
biati, and Maffioli back in 1982, no further improve-
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ments have been obtained despite an immense amount
of research. Even a reduction of the coefficient 1 of log n,
which would also be of interest, has not been achieved
vet. To say it with the words of Johnson et al. [14],
“nothing better has been found in two decades”.

The set cover problem is another important and well
known NP optimization problems. Johnson [13] pro-
vides a polynomial time approximation algorithm with
performance ratio Inn + 1. As in the case of A-ATSP,
this result withstood any attempts of improvement. Fi-
nally, Feige [8] gave an explanation for this phenomenon:
The set cover problem cannot be approximated within
(1—¢€)-1lnn for any € > 0, unless the complexity as-
sumption NP C DTIME(n©Ueglog ) holds. It is a nat-
ural question whether there is a similar explanation for
A-ATSP or not.

The main result of the present work is a first (ad-
mittedly tiny) nontrivial improvement of the approxi-
mation performance for A-ATSP: We present a factor
0.999 - log n approximation algorithm for A-ATSP with
polynomial running time. This shows that the perfor-
mance ratio achieved by Frieze, Galbiati, and Maffioli
is not the final one and particularly rules out a result
similar to the one by Feige for the set cover problem.

1.1 Notations and Conventions. For a set of
nodes V, let K (V') denote the set of edges V xV\{(v,v) |
v € V}. Throughout this work, we are considering di-
rected graphs G = (V, K(V)) together with a weight
function w : K(V) = Q>0 assigning each directed edge
a nonnegative weight. We always require that w fulfills
the triangle inequality (1).

A cycle cover of a directed graph G is a spanning
subgraph that consists solely of node disjoint directed
cycles. A cycle is called a k-cycle if it has length
exactly k. A cycle cover C is called a k-cycle cover,
if each cycle in C has length at least k. (By definition,
every cycle cover is a 2-cycle cover.) If C' is a collection
of node disjoint cycles but not a spanning one, we call
C also a partial cycle cover. If we speak of the number
of cycles of a partial cycle cover, then we count each
isolated node, i.e., each node that is not part of a cycle,
as one single cycle (for consistency reasons).



For any subgraph S = (V, E) of G, the weight w(S)
of S is defined as the sum of the weights of the edges in
E, that is, w(S) = >,y w(e).

For a given directed graph G with weight func-
tion w, let AB(G) denote the weight of a minimum
weight cycle cover. (This is also called the assignment
bound.) Furthermore, let TSP(G) denote the weight
of a minimum weight TSP tour of G. Obviously, we
have AB(G) < TSP(G). Note that AB(G) and a corre-
sponding minimum weight cycle cover can be computed
in polynomial time.

1.2 Previous Results. The best previous polyno-
mial time approximation algorithm for A-ATSP has
approximation performance logn, as shown by Frieze,
Galbiati, and Maffioli [9]. Utilizing repeated minimum
mean cycle computations, Kleinberg and Williamson de-
sign an interesting approximation algorithm with poly-
nomial running time which achieves performance ratio
2-Inn =~ 1.3863 - logn, see [20]. For the symmetric
case, Christofides [7] presents a polynomial time factor
% approximation algorithm for A-TSP.

A well studied special case of ATSP is the one,
where w may only attain the values one and two. Al-
ready this problem is APX-hard [18]. (Strictly speak-
ing, only the MaxSNP-hardness is shown there.) The
currently best approximation ratio for this problem is
3 [3]. For the symmetric case, Papadimitriou and Yan-
nakakis [18] achieve approximation performance .

Chandran and Ram [6] study the special case of
a strengthened triangle inequality. They assume that
w fulfils w(u,v) < y(w(u,z) + w(z,v)) for some =
with 1/2 < v < 1 instead of (1). Their main result
is a constant factor 7 approximation algorithm for
this special case of A-ATSP. For the case where
w is in addition symmetric, Bockenhauer et al. [4]
present polynomial time approximation algorithms with
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Finally, Carr and Vempala [5] extend the so—(caliy()ed
Held—Karp conjecture [12] to the asymmetric case. A
proof of this extended conjecture would imply that the
integrality gap of a certain linear program formulation
of A-ATSP is bounded by %. However, this does not au-
tomatically yield a corresponding rounding procedure.
Moreover, the Held-Karp conjecture still remains un-
proved after more than three decades.

1.3 New Results. Our main result is a 0.999 - logn
approximation algorithm for A-ATSP with polynomial
running time. Perhaps this does not look very im-
pressive at a first glance, but after two decades of
intense research, this is the first nontrivial improve-
ment of the result by Frieze, Galbiati, and Maffioli at

all. (The term “nontrivial” excludes ratios of the from
1-logn — O(loglogn), which can be achieved by solving
small subinstances in the algorithm of Frieze, Galbiati,
and Maffioli exactly.) In our point of view, the main
achievement of this work is the encouraging proof that
the results of Frieze, Galbiati, and Maffioli are not the
last word. Particularly, this rules out a result similar to
Feige’s [8], who shows a tight threshold of 1-Inn for the
approximability of the set cover problem.

The techniques in this paper may be helpful for
achieving further improvements concerning the approx-
imability of A-ATSP. Also note that it makes sense
to care for the constant involved in the O-notation of
O(f(n)) approximation algorithms. If the constant is
too large, then even for slowly growing functions f, the
algorithm itself might not be practical for instances of
“interesting” size. Any improvement on the constant
improves the overall approximation performance.

2 A Generic Repeated Cycle Cover Algorithm

In this section, we present a generic approximation
algorithm for A-ATSP (see Figure 1). To this aim, we
generalize the ideas by Frieze, Galbiati, and Maffioli [9].
Compared to their algorithm, the main difference here
is that we repeatedly compute a partial cycle cover C'
of the given graph, instead of a full cover. After that
we choose one representative among the nodes of each
cycle. We recursively proceed by computing a TSP tour
T’ on the graph induced by the representative nodes
together with the nodes not contained in any cycle.
Then we combine the partial cover C' and the tour 1"
(viewed as a cycle in G) yielding the final tour 7.

2.1 Good Partial Cycle Covers. Frieze, Galbiati,
and Maffioli repeatedly compute minimum weight 2-
cycle covers, which can be done in polynomial time.
Better approximation performances can be achieved,
if one would compute, say, minimum weight 3-cycle
covers. The latter problem is however already APX-
hard, even if the edge weights are between one and two
(modify the proof in [2] for the maximization variant).
Below, we introduce a relaxation of minimum weight
k-cycle covers which we call good partial cycle covers:

Problem: 5-GPCC (with 0 < b < 1)

Instance: a directed graph G = (V, K(V)),
a weight function w on K (V)
that fulfils the triangle inequality.
Goal: a partial cycle cover of weight « - TSP(G)

with g [V cycles (where f < 1)
such that a/(—log ) < b.

(Note that —log 3 is positive, since 0 < < 1.) It
is crucial for our algorithm (see Case 4b in Section 3)



that we allow partial cycle covers in the above problem
definition. We call a partial cycle cover fulfilling the
above condition a/(—logf) < b also b-good. The
importance of the ratio a/(— log #) will become clear in
the next subsection. Our aim is to show that 6-GPCC
is polynomial time solvable for some value of b < 1. By
computing a minimum weight cycle cover (which has
at most n/2 cycles), we see that 1-GPCC is solvable in
polynomial time.

2.2 Analysis of the Algorithm. The analysis of
the generic algorithm in Figure 1 relies on the following
two lemmas. For two graphs H = (V. E) and H' =
(V, E') over the same node set V, H U H' denotes the
graph (V,EUE').

LEMMA 2.1. Let D and D' be two (partial) cycle covers
over a node set V. Then each weakly connected compo-
nent of DU D’ is also strongly connected and Eulerian.

Proof. Since D and D’ consist solely of cycles, each
weakly connected component of D U D' is also strongly
connected. Furthermore each such component is Eule-
rian, since the indegree of each node equals its outde-
gree. m

LEMMA 2.2. Let H be a directed graph with a weight
function w that fulfills the triangle inequality and let S
be a spanning subgraph of H. If each weakly connected
component of S is Eulerian, then there is a cycle cover
C of H such that the number of cycles in C equals
the number of connected components of S and w(C) <
w(S). Furthermore, C can be constructed in polynomial
time.

Proof. For each component of S, we compute an Eu-
lerian tour. This tour is transformed into a cycle by
taking shortcuts (see e.g. [15]). That is, whenever the
Eulerian tour visits a node it has already visited, we
go on with the next node in the Eulerian tour that has
not been visited so far. Because w fulfills the triangle
inequality, none of these shortcuts increases the overall
weight. m

By the above Lemmas 2.1 and 2.2, we can transform
C UT' into a TSP tour T of G, as C UT" has only one
connected component by construction. The weight of T
is at most w(C) + w(T").

To achieve polynomial running time, we have to
choose b in step 1 of the algorithm in such a way that
b-GPCC can be solved in polynomial time. Since in each
recursive step, the number of nodes decreases by at least
one, the overall running time of the generic algorithm is
bounded by |V| times the running time of the algorithm
used to solve b-GPCC.

Input: a directed graph G = (V, K(V)) with
a weight function w : K(V) = Q>0
fulfilling the triangle inequality.

Output: a TSP tour 7.

1. Compute a b-good partial cycle cover C of G.

2. From each cycle in C, choose one (arbitrary)
node. Let V' be the set consisting of these
nodes together with all nodes in V' that are
not contained in any cycle of C.

3. Recursively compute a TSP tour 7’ of the
graph G' induced by V.

4. Combine C and 7" to obtain the final tour 7'
as described in Lemmas 2.1 and 2.2.

Figure 1: The generic repeated cycle cover algorithm

Let us now analyze the approximation performance
of the generic algorithm (in dependence of b). We
claim that its approximation performance is b - logn.
The proof is by induction: assume that on instances
with n’ < |V] nodes, the algorithm computes a factor
b-logn' approximation to a minimum weight TSP tour.
By the definition of b-good, there are a and g with
a/(—log ) < bsuch that C has weight «- TSP(G) and
B - V] cycles. Henceforth, V' has § - |V| many nodes.
By the induction hypothesis, we compute a tour T' with
weight at most

w(C) +w(T") < a-TSP(G) + b-log(B - |V|) - TSP(G")
<(a+b-logp) - TSP(G)
+b-log(|V]) - TSP(G)
< b-log(|V]) - TSP(G).

Note that o + b -log8 < 0 by the definition of b-
good. Moreover, TSP(G') < TSP(G) by the triangle
inequality. Thus we obtain the next result.

THEOREM 2.1. If b-GPCC is solvable in polynomial
time for some 0 < b < 1, then there is a polynomial
time b -logn approximation algorithm for A-ATSP.

By plugging in the fact that 1-GPCC is polynomial
time solvable, we get the repeated cycle cover algorithm
of Frieze, Galbiati, and Maffioli.
for

3 A Polynomial Time

0.999-GPCC
Throughout the whole section, G = (V, K(V)) denotes
a directed graph with n nodes and w is a weight function
of G fulfilling the triangle inequality.

Algorithm



The problem of computing a minimum weight cycle
cover can be solved by the following well-known relaxed
linear program:

Minimize Z w(u, V)T (y,y) subject to
(u,v)eK(V)
Z T(up) =1 forallveV
uweV\{v}

(indegree constraints),

(2)

Z T(up) =1 foralu e V
veV\{u}
(outdegree constraints),
T(yw) >0 for all (u,v) € K(V).

The variable z(,,,) corresponds to the edge (u,v) of G.
This is merely the LP-formulation of minimum weight
bipartite matching, we just have the same node set V' on
both sides. The matrix corresponding to (2) is totally
unimodular [17], thus any optimum basic solution of
(2) is integer valued (indeed {0,1} valued) and yields
a minimum weight cycle cover. The best (strongly)
polynomial time algorithm for solving (2) currently
known has a running time of O(n?), see [1].

In the worst case, the minimum weight cycle cover
obtained by the above procedure consists solely of 2-
cycles. In terms of good cycle covers, we have shown
that 1-GPCC is polynomial time solvable. To improve
this, we add further constraints to the linear program,
the 2-cycle elimination constraints:

(3) T(uw) T Tiou) <1 for all (u,v) € K(V)

(2-cycle constraints).

These constraints are a subset of the so-called subtour
elimination constraints (see [15]).

If we consider (2) as an integer linear program,
adding the constraints (3) ensures that the optimum
solution is a 3-cycle cover, since at most one of T, )
and x(,,) may be one. However it is not clear how to
solve this integer linear program in polynomial time.
In fact, the problem of computing minimum weight
3-cycle covers is APX-hard, even with the triangle
inequality [2]. After adding the constraints (3), the
corresponding matrix is not totally unimodular any
more. Hence a solution of the relaxed linear program
may be fractional. The remainder of this section is
devoted to how to construct a good partial cycle cover
from such a fractional solution.

3.1 Decomposition of a Fractional Solution. In
this subsection, we show how to obtain a collection of
cycle covers from an optimum fractional solution of the
linear program. The procedure bases on classical results
by Konig as well as Birkhoff and von Neumann and
has been used by Lewenstein and Sviridenko [16] in the
context of computing mazimum weight TSP tours.

Let xz‘uw) denote an optimum solution of the relaxed
linear program (2) together with the 2-cycle constraints
(3). Let W™ =3y vyer(v) w(u,v):ﬂ’(*uyv). Choose B to
be the minimum positive integer such that for all (u,v),
B - a:\*%]w) is integral. Le‘zt S(uw) = B'- a:zuyv).

e create a multigraph H with node set V as
follows: for each edge (u,v), we add &,,.) many copies
of (u,v) to the edge set of H. By the degree constraints
in (2), H is a B-regular multigraph. The next lemma
follows at once from Konig’s edge coloring theorem (see
e.g. [10, Chap. 30]).

LeMMA 3.1. Let H be a B-regular multigraph. Then
the edges of H can be partitioned into B sets such
that each set is a cycle cover. Such a partition can be
obtained in time polynomial in B and the number of
nodes of H. m

However, the number B may not be polynomial
in the input size. We can circumvent this problem as
follows: Recall that a matrix is doubly stochastic if all
entries are nonnegative and for each row and for each
column, the sum over the elements equals one. If in
addition, the matrix is also {0, 1} valued, then we speak
of a permutation matriz. Note that the n X n—matrix
X* = (aczu’v)) is doubly stochastic by the constraints in
(2). (To build X*, we order the nodes in V arbitrarily.
All entries on the main diagonal of X* are zero.)

LEMMA 3.2. (BIRKHOFF-VON NEUMANN) Ewvery dou-
bly stochastic n x n—matriz S is a convex combination of
at most n? permutation matrices, i.e., there are permu-
tation matrices Py, ..., P; with t < n? and nonnegative
reals «; with 2221 a; = 1 such that S = 2221 a; P;.
Such a decomposition can be found in polynomial time.

For a proof of the Birkhoff-Von Neumann theorem,
see e.g. [11, Chap. 3].

We decompose X * according to the previous lemma.
Every permutation matrix F; of this decomposition
induces a cycle cover of G. (P; induces indeed a
cycle cover and not just a partial cycle cover. A close
inspection of the proof of the Birkhoff-Von Neumann
theorem shows that all entries on the main diagonal of
P; are zero, since the entries on the main diagonal of
X* are zero.) Now we choose B to be the minimum
positive integer such that all v; = B - a; are integral.



Figure 2: A connected component with four nodes
consisting only of 2-cycles from C; and C;. Dashed
edges are from the one, solid edges from the other
cycle cover. Such a component necessarily has an even
number of 2-cycles and can be decomposed into two big
cycles with opposite directions. One of those cycles is
added to Cj, the other to C}.

(Note that the «; are all rationals with polynomially
many bits in our case.) Each matrix P; then represents
v; identical cycle covers. Thus in the following, we
work with the cycle covers C1, ..., C; corresponding to
Py,..., B, where t < n?, instead of working with all B
cycle covers explicitly. Each C; counts as 7; covers.
We have 2221 yw(C;) = B - W*. (Note that each
Ci,...,Cy is still a full cycle cover and not a partial
one. Later on, we may remove cycles from C,...,C}
to obtain partial covers.)

The following lemma, due to Lewenstein and Sviri-
denko [16], states that every 2-cycle can appear in at
most half of the cycle covers C1,...,C; (counted with
multiplicities y1,...,7)-

LeMMA 3.3. Let ¢ be a 2-cycle consisting of two nodes
u and v. Let I be the subset of all i € {1,...,t} such
that ¢ is a cycle in C;. Then there is a set of indices
I, such that for all j € I, C; contains neither the edge

(u,v) nor (v,u), and Zje[z V2> Zz’eh Yi-

3.2 Normalizing the Cycle Covers. In what fol-
lows, we will consider the union of two of the cycle covers
C; and C;. The union C; U C; consists of strongly con-
nected components that are all Eulerian. Each node is
part of one or two cycles. (The case of one cycle arises
when C; and C; contain an identical cycle.)

In this subsection, we are particularly interested in
strongly connected components that are formed solely
by 2-cycles from C; and Cj. If such a component D
consists of more than one 2-cycle, then one moment’s
reflection shows that D consists of an even number of 2-
cycles and that its edges can be decomposed into two big
cycles, see Figure 2 for an illustration. Each of these two
big cycles contains all nodes of D, the only difference is

the direction of the cycles. We may now replace the
corresponding 2-cycles in C; and C; by one of these
two big cycles. We again obtain two cycle covers.
Lemma 3.3 still holds, since we only removed 2-cycles.
Since we only redistributed edges, this process does not
change the overall weight B - W*. (Note that the two
big cycles necessarily have the same weight, because
otherwise we could replace the 2-cycles in C; and C}
by the lighter of these two big cycles and would have on
overall weight of less than B - W*, a contradiction.)

Altogether, we can replace C; and C; by two cycle
covers C; and C} such that there is no connected
component in Cj and C} with more than two nodes
that is formed solely by 2-cycles from Cj and Cj. By
applying this process (;) times, we may assume in the
following that for all ¢ and j, C; U C; does not contain
any connected component with more than two nodes
that is build solely from 2-cycles of C; and Cj. This
proves the following lemma.

LEMMA 3.4. There are cycle covers Ci,...,C} such
that the total weight of Ci,...,C{ is again B - W*,
Ci,...,C| fulfill the claim of Lemma 3.3, and for all
1 <i,j <t, no connected component of C;UC consists
solely of 2-cycles of C; and C. 1,-..,C can be
computed from Cy,...,Cy in polynomial time.

For convenience, we use the same names C'q,...,C;
for the new normalized cycle covers in the following.

3.3 Computing Good Partial Cycle Covers.
The remainder of this section is devoted to comput-
ing a 0.999-good partial cycle cover from the covers
C1,...,C¢. To this aim, we introduce a number of pa-
rameters. We may of course assume that B > 2, be-
cause otherwise the solution x?uw) is already integral

and represents a 3-cycle cover.

® Wnin = min{w(C;) | 1 < i < ¢t} is the minimum
among the weights of Cy,...,C;. (Figure 3 shows
an example where the w(C;) are actually distinct.)

e ¢; and ¢; are chosen such that c¢; - n is the total
number of cycles in C; and ¢; - n is the number of
2-cycles of C;. We have 0 < ¢; < ¢; <1/2. Let

o~
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be the average number of cycles (counted with
multiplicities). In the same way, let
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Figure 3: Solid edges have weight 1, dashed ones weight
%, and edges not drawn have weight 2. (1,3,4,5,2)
is an optimum 3-cycle cover. It has weight 12—1 The
two cycle covers (1,3,2),(4,5) and (1,2),(3,4,5) are a
feasible solution of (2) and (3), both with weight 3.
The first cover has weight 6 whereas the second cover

has weight 5.

e s;; is chosen such that s;; - n is the number of
2-cycles that appear both in C; and in C; (where

i#7j). Let

_ 1
5i=pB 7 Z YjSi,j
J#i
and .
= BT 2
£
where the first summation is only over j while the
second one is over ¢ and j.

For the analysis, we need the following technical
lemma, which bounds the values of 5; and s.

LEMMA 3.5. For all 1 < i < t, we have 5; < ¢;/2.
Moreover, 5 < q/2 holds.

Proof. Consider the sum

(B-1)s;-n= Z'VJSM ‘M.
J#i
Since each 2-cycle in C; can appear in at most B/2 — 1
other cycle covers (counted with multiplicities) by
Lemma 3.3, we have

(B/2—-1)¢;-n > E ILIRRN
J#i
Consequently,
B-1

> = © 5 > 95
“"=prp-1 %

5>
for B > 2. If B = 2, then no 2-cycle of C; can appear
in the other cycle cover, thus s; = 0. This proves the
first inequality. Multiplying with +; and summing over

all i, we get

t t
Bg=) v >2Y Vs =285,

i=1 =1

which shows the second inequality. m

We now distinguish a number of cases. In each of
them, we compute a 0.999-good partial cycle cover. In
the first case, one of the w(C;) is significantly smaller
than W™, in the second one, one of the C; has a
significant portion of cycles of length greater than two.
These cases are obviously easy. In the third case, one
sk is small and we combine C; and C}, into one cover.
The fourth case is the complement of the first three
cases. It splits into two subcases.

Case 1: Assume that wnin, < 0.999 - W*. In this case,
we choose a j with w(C;) = wmin. C; is a 0.999-good
cycle cover, as W* < TSP(G) and 0.999/(—logc;) <
0.999.

For the remaining cases, we may assume that a
fraction of at least 0.95 of the C1, ..., C; have weight at
most 1.019- W* (counted with multiplicities), i.e., there
are indices j1, . . ., jm such that w(Cj,) < 1.019-W* for
alll < p <mand ZZLl V4, = 0.95-B. This can be seen

as follows: We have 2221 viw(C;) = B - W* as well as
w(C;) > 0.999-W* for all 1 <4 < t. If a fraction of more
than 0.05 of the cycle covers had weight greater than
1.019 - W*_ then the overall weight of the cycle covers
would be > B-(0.05-1.01940.95-0.999) - W* = B-W*,
a contradiction.

For the remaining cases, let X = {ji,....0m}
denote this set of indices. Furthermore, let ¥ =
> =1 Vi = 0.95- B and define the following variants of
q, Si, and § with respect to X:

- 1
cispXoca

_ 1
® S; = m ' Z YjSi,j and v
jeX\{d} 1€X

Case 2: Assume there is a j € X with ¢; < 0.4931.
Then C; is 0.999-good, as w(C;) < 1.019- W* by the
definition of X and 1.019/(—log0.4931) < 0.999.

Case 3: Assume there are j, k € X with j # k such
that s;, < 0.2155. In this case, we combine C; and Cj,
to one cycle cover according to the following lemma.

LEMMA 3.6. For each j # k, there is a cycle cover of
G with weight at most w(C;) + w(Cy) having no more
than (sjx + ¢j + ¢k — ¢; — qi) - 1 cycles. Such a cover
can be obtained from C; and Cj, in polynomial time.



Proof. Consider the graph C; U Cj (we here re-
move possible double edges). Its weight is at most
w(C;) + w(Cf). Furthermore C; UCy, has s, - n many
2-cycles (which appear both in C; and Cj). The other
parts of C; U C} consist of strongly connected com-
ponents with at least three nodes. These components
are even Eulerian. Since we normalized the covers via
Lemma 3.4, each such component contains at least one
cycle of length three or greater from C; or Cj. Since
there are (¢; —¢;) -n and (cx — gx) - n such cycles in C;
and CY},, respectively, there are at most that many con-
nected components. As in Lemma 2.2, we can replace
each connected component by a cycle without incurring
any extra weight, as w obeys the triangle inequality. m

Note that ¢; — ¢; < %(1 — 2¢;) holds for all i.
This is due to the fact that there are (1 — 2¢;) - n
nodes in C; that do not belong to 2-cycles and thus
they are contained in cycles of length at least three.
From this it follows that g; > 3¢; — 1 for all i. Thus
¢ —¢qi < 1—2¢; < 0.0138, because otherwise, we
would be in Case 2. The same holds for ¢; — gx. Thus
the cycle cover obtained via Lemma 3.6 has at most
(0.2155 4 0.0276) - n = 0.2431 - n cycles and has weight
at most 2-1.019-W* = 2.038-W*. Thus it is 0.999-good,
because 2.038/(—log0.2431) < 0.999.

Case 4: For all ¢, we have

YV =1)-&= Y ysi; <Y vsi;=(B-1)-5.

jeX\{i} J#i
Thus,
__B-1 __ B-1
Sy 1 %=095-B-1

Since §; < 1/4 by Lemma 3.5 for all ¢ (note that
g;i < 1/2, since C; is a 2-cycle cover) and B > 2, we
have
3. < 1 < 1
F2095-2-1 =009
Thus for each j € X there is a £k € X such that
sjr < 0.2778. Fix such a pair j and k. Since we are not

in Case 3, we have s; > 0.2155.
We consider two subcases:

W)

-0.25 < 0.2778.

Case 4a: In this case, the 2-cycles that appear both in
C; and in Cy have total weight at least 0.338 - W*. We
now proceed as in Case 3. But we have to account for
the weight of the 2-cycles that appear both in C; and in
C}, only once. (In Case 3, this weight could have been
zero, thus we did not mention this there.) Therefore
the total weight of the obtained cycle cover is at most
w(C;) + w(Cj) —0.338 - W* < (2.038 —0.338) - W* =

1.7- W*. On the other hand, the number of cycles in
the cover is at most (0.2778 +2-0.0138) - n < 0.3054 - n.
Therefore the cycle cover obtained is 0.999-good, as
1.7/(—log0.3054) < 0.999.

Case 4b: Now assume that the 2-cycles that appear
both in C; and in C} have total weight less than
0.338 - W*. Since s;; > 0.2155, these 2-cycles are a
partial cycle cover with at most n—0.2155-n = 0.7845-n
cycles and weight < 0.338-W*. (Recall that in the case
of a partial cycle cover, we count each isolated node as a
single cycle.) Thus this partial cycle cover is 0.999-good,
since 0.338/(—10g0.7845) < 0.9653 < 0.999.

Final Result: Since the above case distinction is ex-
haustive, we proved the following result.

THEOREM 3.1. There is a polynomial time algorithm
for 0.999-GPCC.

Together with Theorem 2.1, we obtain the following
corollary.

COROLLARY 3.1. There is a 0.999-logn approzimation
algorithm for A-ATSP with polynomial running time.

REMARK 3.1. All numerical calculations were checked
with two computer algebra systemns (Mathematica 4.0,
Maple V) using arbitrary precision arithmetic.

As Case 4b suggests, the above analysis can be
somewhat improved, but not very much. Since this it
not very illuminating, we refrain from doing so here.
More sophisticated analysis techniques also did not yield
any significant improvements.

4 Conclusion

In this paper, we presented a polynomial time 0.999 -
log n approximation algorithm for A-ATSP. This is the
first nontrivial improvement of the approximation per-
formance achieved by Frieze, Galbiati, and Maffioli [9]
and shows that their algorithm is not the last word. As
a main tool, we have introduced the concept of b-good
partial cycle covers and designed a polynomial time al-
gorithm for computing 0.999-good partial cycle covers.

A first open question is whether the analysis in Sec-
tion 3.3 can be significantly improved, perhaps by in-
troducing some more cases. More interesting is proba-
bly the challenge of incorporating more of the subtour
elimination constraints into the linear program (2). For
instance we could add constraints similar to (3) for 3-
cycles to the linear program (2). It is not clear to us how
to gain some improvements out of these constraints.
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