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1 Introduction

We investigate the relation between budget balance and
communication for the multicast cost-sharing problem
in the context of distributed algorithmic mechanism de-
sign. We use the formal model introduced by Feigen-
baum, Papadimitriou, and Shenker [3]: Our network is
a rooted undirected tree T = (V,E) with n nodes. The
root r of T models the service provider. The set P of
leaves of T represents the users, who wish to receive the
transmission of the provider. Let p = |P |. Each e ∈ E
has a weight ce. This weight represents the costs of us-
ing e for the transmission. If a transmission is sent to a
subset R ⊆ P of the users, then it is sent along the edges
of the smallest subtree of T containing r and all nodes
of R. We call this subtree T (R). The costs c(T (R)) of
this subtree is the sum of the weight of its edges. Each
i ∈ P has a utility ui which he derives from getting the
transmission. The ui are private information.

A cost-sharing mechanism determines which of the
users receive the multicast transmission and which price
they have to pay. The set of each user’s strategies is to
report any value bi ≥ 0 as their utility. Based on the
input vector b = (b1, . . . , bp), the mechanism decides
which users receive the transmission and assigns prices
to the users. The value xi(b) denotes the price user i has
to pay. σi(b) equals one if i gets the transmission and
is zero otherwise. The receiver set R(b) is the set of all
users receiving the transmission. The individual welfare
wi(b) of user i is defined by wi(b) = σi(b)ui−xi(b). The
aim of each user is to maximize his individual welfare.

Like Feigenbaum, Papadimitriou, and Shenker [3],
we assume that messages arrive reliably, in order, and
without significant delay. Each message here consists
of a number that is algebraic1 in the bi and the ce. We
mainly care about “hotspot communication costs”, that
is, the maximum number of messages per edge should
be small, say O(1) or O(polylog(n)).
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1This prohibits encoding tricks.

1.1 Cost-Sharing Mechanisms. As a counter-
measure against users misreporting their utilities, mech-
anisms should be (group) strategyproof.

Group Strategyproof (GSP): For every coalition
C ⊆ P and every vector b = (b1, . . . , bp) with
bi = ui for all i /∈ C the following holds: If
σi(b)ui − xi(b) ≥ σi(u)ui − xi(u) for all i ∈ C,
then this holds with equality for all i ∈ C.

We only treat mechanisms that also satisfy the
following three technical properties, which are natural
in the context of multicast cost-sharing.

No Positive Transfer (NPT): For all i, xi(b) ≥ 0.
Voluntary Participation (VP): For all i, wi(b) ≥ 0

provided that i bids truthfully, i.e., bi = ui.
Consumer Sovereignty (CS): Every user i gets the

transmission as long as his bid bi is high enough.

Two further requirements are usually considered.
One is efficiency (in a socio-economic sense) which we
will not deal with here, because this case is rather well
understood [3]. We are concerned with mechanisms that
meet GSP, NPT, VP, and CS and are (approximately)
budget-balanced as defined below.

Budget Balance (BB):
∑

i∈R(b) xi(b) = c(T (R(b)).

Algorithms for budget balanced mechanisms neces-
sarily have high communication costs (see Section 2.1).
Therefore, we investigate mechanisms that are only ap-
proximate budget balanced.

α-Approximate Budget Balance (α-BB):
(1/α) · c(T (R(b))) ≤

∑
i∈R(b) xi(b) ≤ α · c(T (R(b)).

(α may be a function depending on the network.)

2 Results

2.1 Previous Results. The Shapley Value SH and
any other mechanism that meets GSP, NPT, VP, CS,
and BB and that is also symmetric2 has bad network
complexity: Feigenbaum et al. [2] show that such a
mechanism has to sent Ω(p) bits over Ω(n) edges.

2A mechanism is symmetric if users connected by a path with
costs zero are treated equally.



Archer et al. [1] propose an approximation SSF of
SH with low communication costs. Their algorithm for
SSF sends log p/ log κ numbers over each edge for any
fixed parameter κ > 1. SSF is only κh-BB, where h is
the height of T . 3

2.2 New Results. We first observe that SSF is
asymptotically budget balanced (i.e., the function α in
the definition of α-BB fulfills α(n) → 1 for n → ∞)
on trees of polylogarithmic height (which seems to be
perfectly reasonable for multicast trees) when choosing
κ properly. This conclusion is new and, in particular,
is not drawn by Archer et al. Second, we present a
mechanism N that meets GSP, NPT, VP, and CS and
can be computed with only a polylogarithmic number
of messages per edge. N is also reasonably budget
balanced, more precisely, it is O(log n)-BB. Compared
with the mechanism of [1], which is only κn-approximate
budget balanced on trees of height Ω(n) for some κ > 1,
this is almost a doubly exponential improvement.

3 Proofs

3.1 Trees with polylogarithmic height. SSF per-
forms particularly well on trees of polylogarithmic
height when setting κ = 1 + 1/h̄, where h̄ =
(max{log n, h})1+ε, h is the height of the multicast tree,
and ε > 0 is a fixed constant. Then SSF sends at
most (1 + o(1)) · h̄ · log p numbers over each edge, as
log(1+x) ≥ x

x+1 for x ≥ 0. Moreover, SSF is (1+1/h̄)h-
BB. Since (1+x)m ≤ 1+ mx

1−mx for all m ∈ N and x ≥ 0
with mx < 1, (1 + 1/h̄)h = 1 + o(1) as a function in n.

Theorem 3.1. On trees of polylogarithmic height, SSF
is asymptotically budget balanced while sending only a
polylogarithmic number of messages over each edge.

3.2 Trees with arbitrary height. To construct N ,
we basically use the mechanism SSF but on a modified
tree T ′ with height O(log n). This modification is only
“virtual” in the sense that T ′ can be embedded into T
in an appropriate way.

T ′ will be a topology tree for T as defined by
Frederickson.4 Throughout this section, we refer to
the definitions in [4, Section 2]. Topology trees are
only defined for binary trees. Therefore, we first have
to make T binary. If v is a node of T with children
v1, . . . , v`, then we insert a binary tree of height log ` and
give all the new edges weight zero. This modification
is only “virtual” in the sense that we do not have to

3Archer et al. also bound the efficiency loss. Due to space

limitations we do not deal with this issue here.
4We thank an anonymous referee for pointing out the useful-

ness of topology trees for our purposes.

change T . All the changes are simulated by v when
running the mechanism.

Next, we compute a topology tree T ′ for T and em-
bed it into T . T ′ can be computed by calling the pro-
cedure cluster in [4, Section 2] O(log n) times. Proce-
dure cluster consists of one top-down and one bottom-
up pass and sends a constant number of messages over
each edge.

We call the node v of a cluster C that is closest to
the root r of T the root of C. In T ′, an edge connecting
a cluster C at level ` with a cluster C ′ at level `+1 gets
the weight of the path from v to v′, where v and v′ are
the roots of C and C ′. By induction, it follows that the
weight of a path in T from any leaf u to the root r of T
equals the weight of the path in T ′ from u to the root
of T ′. The following lemma summarizes these ideas.
Lemma 3.1. The tree T ′ has height O(log n). It can be
computed on T with O(log n) messages per edges. The
weight of the path in T from a leaf u to the root equals
the weight of the path in T ′ from u to the root. Each
edge of T contributes to O(log n) edge weights of T ′.

Our mechanism N now works as follows: It simply
runs SSF on T ′. N inherits all game-theoretic properties
of SSF. Furthermore, it is O(log n)-BB.5 To execute N
on T , any computation of SSF at a cluster C is carried
out in T at its root v. We send messages that are sent
from cluster C to C ′ in T ′ from v to v′ in T . Since each
edge of T contributes weight to O(log n) edges of T ′,
this increases the number of messages send over each
edge by a factor of O(log n).
Theorem 3.2. Mechanism N meets GSP, NPT, VP,
and CS. It is O(log n)-approximate budget-balanced.
Mechanism N can be executed by sending O((log n)3+ε)
messages over each edge.
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