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A Prelude: Mathematical founda-

tions

A.1 Relations

Let A and B be two sets. A (binary) relation on A and B is a subset
R ⊆ A×B. If (a, b) ∈ R, then we will say that a and b stand in relation R.
Instead of (a, b) ∈ R, we will sometimes write aRb. While this looks weird
when the relation is called R, let us have a look a the following example.

Example A.1 R1 = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} ⊆ {1, 2, 3} ×
{1, 2, 3} is a relation on {1, 2, 3}.

(a, b) ∈ R1 means that a is less than or equal to b. In this case, a ≤ b
looks much better than (a, b) ∈≤.

Consider a relation R on a set A and itself, i.e., R ⊆ A× A. R is called
re�exive if for all a ∈ A, (a, a) ∈ R. R1 is re�exive, since (1, 1), (2, 2), (3, 3) ∈
R1.

R is called symmetric if (a, b) ∈ R implies (b, a) ∈ R, too, for all (a, b) ∈
A×A. The relation R1 is not symmetric, since for instance (1, 2) ∈ R1 but
(2, 1) /∈ R1.

R is called antisymmetric if (a, b) ∈ R and a 6= b implies (b, a) /∈ R.
R1 is antisymmetric, since we do not consider tuples of the form (a, a).
There are relations that are neither symmetric nor antisymmetric. R2 =
{(1, 2), (1, 3), (3, 1)} is such an example. It is not symmetric, since (1, 2) ∈ R2

but not (2, 1) ∈ R2. It is not antisymmetric, because (1, 3) and (3, 1) are
both in R2.

A relation R is called transitive if for all a, b, c ∈ A, (a, b) ∈ R and
(b, c) ∈ R implies (a, c) ∈ R. R1 is transitive. The only pairs that we have
to check are (1, 2) and (2, 3), since these are the only with three di�erent
elements and one element in common. But (1, 3) is in R1, too. The smallest
transitive relation T ⊆ A×A such that R ⊆ T is called the transitive closure
of R.

A relation that is re�exive, antisymmetric, and transitive is called partial
order. A partial order R is called total order if for all a, b ∈ A with a 6= b,
either (a, b) ∈ R or (b, a) ∈ R. For instance, R1 above is a partial order, it
is even a total order. Relations R that are orders, well, order the elements
in A. If (a, b) ∈ R, then we also say that a is smaller than b with respect to
R. Elements a such that there does not exist any b 6= a with (b, a) ∈ R are
called minimal ; elements a such that there does not exist any b 6= a with

11



12 A. Prelude: Mathematical foundations

(a, b) ∈ R are called maximal. With respect to R1, 1 is a minimal and 3 is a
maximal element. If an order is total than it has at most one minimal and at
most one maximal element. (The relation ≤ on N does not have a maximal
element for instance.)

A.2 Functions

A relation f ⊆ A×B such that for every a ∈ A, there is at most one b ∈ B
is called a function. Instead of f ⊆ A × B, we often write f : A → B. Let
a ∈ A. If there is a b such that (a, b) ∈ f , then we usually write f(a) = b.
(�The value of f at a is b.�) Note that in this case, b is unique. If there is no
such b, we say that f(a) is unde�ned.1 The domain of a function is the set

dom(f) = {a ∈ A | f(a) is de�ned}.

The image of f is

im(f) = {f(a) | a ∈ dom(f)}.

A function is called total if dom(f) = A. If we want to stress that f need
not be total, we often call it a partial function.

If f : A → B and g : B → C are total functions, then their composition
g ◦ f is a function A→ C de�ned by (g ◦ f)(a) = g(f(a)) for all a ∈ A.

A total function f : A→ B is called surjective, if im(f) = B. f is called
injective if for all b ∈ B there is at most one a such that f(a) = b. f is
called bijective if it is injective and surjective. We use the terms injective,
surjective, and bijective only for total functions.

A.3 Words

Let Σ be a �nite nonempty set. In the context of words, Σ is usually called
an alphabet. The elements of Σ are called symbols or letters. A (�nite)
word w over Σ is a �nite sequence of elements from Σ, i.e, it is a function
w : {1, . . . , `} → Σ for some ` ∈ N. ` is called the length of w. The length
of w will also be denoted by |w|. There is one distinguished word of length
0, the empty word. We will usually denote the empty word by ε. Formally
it is the sequence ε : ∅ → Σ.

Example A.2 Let u : {1, 2, 3} → {a, b, c} be de�ned by u(1) = a, u(2) = b
and u(3) = a. u is a word over the alphabet {a, b, c} of length 3.

Let w : {1, . . . , n} → Σ be some word. Often, we will write w in a
compact form as w(1)w(2) . . . w(n) and instead of w(i), we write wi. Thus

1Strictly speaking, this is not quite correct, since f(a) denotes the value b, which does
not exists. It is more accurate to say �f is not de�ned at a�.
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A.4. Exercises 13

we can write w in an even more compact form as w1w2 . . . wn. wi is also
called the ith symbol of w. The word u from the example above can be
written as aba.

The set of all words of length n over Σ is denoted by Σn. This usually
denotes the set of all n-tuples with entries from Σ, too, but this is �ne, since
there is a natural bijection between sequences of length n and n-tuples. The
set

⋃∞
n=0 Σn of all �nite words is denoted by Σ∗. Note that Σ0 = {ε}. We

usually identify Σ with Σ1, that is, letters with words of length one. Strictly
speaking, these are di�erent objects, letters are elements from a set whereas
words of length one are functions w : {1} → Σ. However, there is a natural
bijection between these two objects mapping w to w(1).

One important operation on words is concatenation. Informally, it is the
word that we get when we connect two words to form a new bigger word.
Formally it is de�ned as follows. Let w : {1, . . . , `} → Σ and x : {1, . . . , k} →
Σ be two words. Then the concatenation of w and x is the function

{1, . . . , `+ k} → Σ

i 7→

{
w(i) if 1 ≤ i ≤ `
x(i− `) if `+ 1 ≤ i ≤ `+ k.

We denote the concatenation of w and x by wx. Let v = ca. Then the
concatenation of u from the example above and v is abaca. Concatenation is
associative but not commutative. The empty word is a neutral element, i.e.,
εw = wε = w for all words w. If we concatenate a word w with itself, we
will also write w2 instead of ww. While this does not save to much space,
writing w7 instead of wwwwwww is much more impressive.

A word x is called a subword of y if there are words u and v such that
y = uxv. If u = ε, then x is called a pre�x of y. If v = ε, then x is called a
su�x of y.

A.4 Exercises

Basic exercises

Exercise A.1 Decide whether following relations over {1, 2, 3, 4} are re�ex-
ive, symmetric, antisymmetric, or transitive? Which are a partial order?

� R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4)}

� S = {(1, 1), (3, 3), (4, 4), (3, 4), (4, 3)}

Exercise A.2 Let Σ be an alphabet. Prove that the relation �the length of
u is smaller than or equal to the length of v� is a re�exive and transitive
relation on Σ∗. If |Σ| = 1, then it is even an order.

© Markus Bläser 2007�2021



14 A. Prelude: Mathematical foundations

Exercise A.3 Let A, B, and C be sets and let f : A → B and g : B → C
be total functions that are injective. Construct an injective function A→ C.

The next exercise might be close to trivial, however, its statement is
important when we want to do proofs by induction of the length of words.

Exercise A.4 For word w with |w| ≥ 1, there is a word w′ with |w′| = |w|−1
and a letter σ ∈ Σ (recall that we identify letters with words of length 1) such
that w = w′σ. This decomposition is unique.

Intermediate exercises

Exercise A.5 Show that if R is an order, then R is acyclic, i.e., there does
not exist a sequence a1, . . . , ai of pairwise distincts elements such that

(a1, a2), (a2, a3), . . . , (ai−1, ai), (ai, a1) ∈ R.

Exercise A.6 Let Σ be an alphabet and let R be a total order on Σ. The
lexicographic order ≤Rlex with respect to R on Σn is de�ned as follows:

u1u2 . . . un ≤Rlex v1v2 . . . vn if uiRvi where i = min{1 ≤ j ≤ n | uj 6= vj}
or i does not exist.

Show that ≤Rlex is indeed a total order.

Exercise A.7 1. Let A be a �nite set and let f : A → A be a total
function. Show that the following statements are equivalent:

� f is injective

� f is surjective

� f is bijective

2. Is the previous part still valid when A is an in�nite set?

Exercise A.8 Prove that Σ∗ with concatenation as an operation forms a
monoid, that is, concatenation is associative and there is a neutral element.

© Markus Bläser 2007�2021



1 Finite automata and regular lan-

guages

1.1 The Chomsky hierachy

In the 1950s, Noam Chomsky [Cho56, Cho59] started to formalize (natural)
languages by generative grammars, that is, a set of rules that describes how
to generate sentences. While the purpose of Noam Chomsky was to study
natural languages, his ideas turned out to be very useful in computer sci-
ence. For instance, programming languages are often described by so-called
context-free grammars.1

Chomsky studied four types of rules that led to four di�erent types of
languages, usually called type-0, type-1, type-2, and type-3. We will formally
de�ne what a grammar is when we come to type-2 languages (also called
context-free languages) since grammars are natural for type-2 languages.
For type-3 languages (also called regular languages), �nite automata are the
more natural model. But once we have characterized type-2 languages in
terms of grammars, we will do so for type-3, too.

Excursus: Noam Chomsky

Noam Chomsky (born 1928 in Philadelphia, USA) is a linguist. In the 1960s, he
became known outside of the scienti�c community for his pretty radical political
views.

In computer science, he is mainly known for the study of the power of formal
grammars. The so-called Chomsky hierachy contains four classes of languages that
can be generated by four di�erent kinds of grammars.

1.2 Finite automata

Finite automata describe systems that have only a �nite number of states.
Consider the following toy example, a co�ee vending machine. This machine
sells co�ee for 40 cents.2 A potential customer can perform the following
actions: He can insert coins with the values 10 cents or 20 cents. Once he
inserted 40 cents or more, the machine brews a co�ee. If the customer has not

1This statement is not quite correct or even completely false, depending on your point of
view. For instance, context-free grammars can describe whether loops are nested correctly,
however, they cannot check whether a variable was declared previously.

2No, you cannot �nd this machine on campus.

15



16 1. Finite automata and regular languages

0c

B

10c

1

B 20c

2

1

B

30c
1

2

B

brew
1/2

2

Figure 1.1: A �nite automaton that models the co�ee vending machine. A
label of 1 or 2 on the edge means that the customer has inserted 10 or 20
cents, respectively. The notation 1/2 means that we can take this edge if
either a 1 or a 2 is read. The label B means that the �Money back� button
was pressed.

1 2 B

0c 10c 20c 0c
10c 20c 30c 0c
20c 30c brew 0c
30c brew brew 0c
brew � � �

Figure 1.2: The COFFEE automaton written as a table. Each line cor-
responds to one state of the automaton. The entry ��� means that the
corresponding transition is unde�ned.

inserted 40 cents so far, he can press the �Money back� button. The machine
keeps any overpaid money. Figure 1.1 shows a diagram of the automaton
COFFEE. The machine has 5 states. The four states 0c, 10c, 20c, and 30c
correspond to the amount of money inserted so far, the state brew is entered
if at least 40 cents have been inserted. Of course, the machine starts in the
state 0c. This is indicated by the arrow on the left side of the circle. An arc
from one state to another means that if the customer performs the action the
edge is labeled with, then the automaton will change the state accordingly.
Once the state brew is reached, the machine is supposed to brew a co�ee. A
clever co�ee machine would then go back to the start state but we leave our
machine as it is for now.

Exercise 1.1 1. Modify the co�ee automaton such that it gives change
back. The amount of change should be indicated by the state that the
automaton ends in.

2. Modify the co�ee automaton such that the customer has the choice

© Markus Bläser 2007�2021



1.2. Finite automata 17

between several types of co�ees.

Nowadays, �nite automata still have applications. We list only three of
them due to the ignorance of the author:

� Finite automata (and variants thereof) are used to verify systems that
have only a �nite number of states.

� Finite automata can be used for string matching, see for instance
[CLRS09, Chapter 32].

� Finite automata can be used as a tokenizer to preprocess the source
code of a computer program.

Formally, we de�ne �nite automata as follows:

De�nition 1.1 A �nite automaton is described by a 5-tuple (Q,Σ, δ, q0, Qacc):

1. Q is a �nite set, the set of states.

2. Σ is a �nite set, the input alphabet.

3. δ : Q× Σ→ Q is the transition function, δ might be partial.

4. q0 ∈ Q is the start state.

5. Qacc ⊆ Q is the set of accepting states.

1.2.1 Computations and regular languages

A �nite automaton M = (Q,Σ, δ, q0, Qacc) starts in state q0. Then it reads
the �rst symbol w1 of its input w = w1 . . . wn and moves from q0 to the state
δ(q0, w1). It continues with reading the second symbol w2 and so on. This
means that in the transition diagram, we always follow the arcs labeled by
w1, w2, . . . starting in q0.

De�nition 1.2 Let M = (Q,Σ, δ, q0, Qacc) be a �nite automaton. Let w ∈
Σ∗, |w| = n.

1. A sequence s0, . . . , sn ∈ Q is called a computation of M on w if

(a) s0 = q0,

(b) for all 0 ≤ ν < n: δ(sν , wν+1) = sν+1,

2. The computation is called an accepting computation if in addition,
sn ∈ Qacc. Otherwise the computation is called a rejecting computa-
tion.

© Markus Bläser 2007�2021



18 1. Finite automata and regular languages

Remark 1.3 1. Since δ is a function, a computation, if it exists, is al-
ways unique.

2. A computation of M on w need not exist, since δ(rν , wν+1) might be
unde�ned. We will treat such an un�nished computation also as a re-
jecting computation. In Lemma 1.6 below, we show that we can always
assume that δ is total and that there are no un�nished computations.

De�nition 1.4 1. A �nite automaton M = (Q,Σ, δ, q0, Qacc) accepts a
word w ∈ Σ∗ if there is an accepting computation of M on w. Other-
wise, we say that M rejects w.

2. L(M) = {w ∈ Σ∗ | M accepts w} is the language that is recognized by
M .

3. A ⊆ Σ∗ is a regular language if there is a �nite automaton M such
that A = L(M).

4. REG denotes the set of all regular languages.

Consider our automaton COFFEE. We did not specify the accepting
states of COFFEE, the natural choice is of course just to have one accept-
ing state, namely, brew. Then COFFEE accepts a word w ∈ {1, 2, B}∗ if
the corresponding sequence of actions results in a co�ee for the customer.
For instance, 22, 112, 1223, and 12B12B12B224 are accepted by COFFEE
whereas 1, 12, 12B12B are not. L(COFFEE) is the set of all words that
result in a co�ee for the customer.

It will be useful to extend the transition function δ : Q×Σ→ Q to words
over Σ. We inductively de�ne the extended transition function δ∗ : Q×Σ∗ →
Q. We �rst de�ne δ∗ for words of length 0, then of length 1, length 2, and
so on. For q ∈ Q, v ∈ Σ∗, and σ ∈ Σ, we set

δ∗(q, ε) = q

δ∗(q, vσ) =

{
δ(δ∗(q, v), σ) if δ∗(q, v) is de�ned

unde�ned otherwise

(Note that every nonempty word w can be uniquely decomposed as w = vσ
with |v| = |w| − 1 and σ ∈ Σ. Therefore, δ∗ is well-de�ned.) The �rst
line basically states that if the automaton reads the empty word (which it
cannot do), then it would stay in its actual state. Next, we get δ∗(q, σ) =
δ(δ∗(q, ε), σ) = δ(q, σ) for all q ∈ Q, σ ∈ Σ. So for words of length 1, δ and
δ∗ coincide, which is what we want. Intuitively, δ∗(q, w) is the state that the

3Not all customers are smart . . .
4Particularly funny when there is a long queue behind you . . .
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1.2. Finite automata 19

automaton reaches if it starts in state q and then reads w. In particular, we
have:

M accepts w ⇐⇒ δ∗(q0, w) ∈ Qacc.

Lemma 1.5 For all states q ∈ Q and all words x, y ∈ Σ∗,

δ∗(q, xy) = δ∗(δ∗(q, x), y),

provided that δ∗(q, xy) is de�ned.

Proof. The proof is by induction on |y|, that is, we assume that q and x
can be arbitrary.

Induction base: If y = ε, then δ∗(q, x) is de�ned. We have

δ∗(q, xε) = δ∗(q, x) = δ∗(δ∗(q, x), ε).

For the second equality, recall that δ∗(q, x) is just a state.

Induction step: For the induction step, our induction hypothesis is that for
all words y of a �xed length n and for all q ∈ Q and for all x ∈ Σ∗:

δ∗(q, xy) = δ∗(δ∗(q, x), y),

provided that δ∗(q, xy) is de�ned. We have to show that this is also true for
all words of the form yσ, that is, for words of length n + 1. Assume that
δ∗(q, xyσ) is de�ned. Then δ∗(q, xy) is de�ned, too. We have

δ∗(q, xyσ) = δ(δ∗(q, xy), σ) = δ(δ∗(δ∗(q, x), y), σ) = δ∗(δ∗(q, x), yσ).

The second equality follows from the induction hypthesis, the other two from
the de�nition of δ∗.

1.2.2 How to design a �nite automaton

How does one design a �nite automaton? In the case of the co�ee vending
machines, the states were already implicit in the description of the problem
and we just had to extract them. In other cases, this might be not this clear.
Assume we want to design an automaton M1 = (Q, {0, 1}, δ, q0, Qacc) that
accepts exactly the strings that contain three 0's in a row, i.e, L(M1) shall
be L1 = {w ∈ {0, 1}∗ | 000 is a subword of w}.

To put ourselves into the position of a �nite automaton, which has only
a �nite amount of memory and can only look at one symbol at a time, think
of a word with a quadrillion of symbols, too many to look at all of them at
once and too many to remember them all. Now we have to scan them one
by one. What we have to remember is the number of 0's that we saw after
the last 1.

© Markus Bläser 2007�2021
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Figure 1.3: The �nite automaton M1. The double circle around state 3
indicates that 3 is an accepting state.

We have four states, 0, 1, 2, and 3. These states count the number of 0's.
If we are in state i and we read another 0, then we go to state i + 1. Once
we reached state 3, we know that the word is in L1. So Qacc = {3} and once
we enter 3, we will never leave it. Whenever we read a 1 in the states 0, 1,
or 2, we have to go back to state 0.

Exercise 1.2 The automaton M1 basically searches for the string 000 in the
word w. Design a similar automaton that searches for the sequence 010. Can
you devise an algorithm that given any sequence s, constructs an automaton
that searches for s in a given word w?

1.3 Closure properties, part I

To get a deeper understanding of regular languages, let's try to prove some
closure properties. We start with complementation: Given L ∈ REG is
L̄ = Σ∗ \ L again regular?5 We have an automaton M = (Q,Σ, δ, q0, Qacc)
for L and we have to construct an automaton M̄ for L̄. The �rst idea is to
exchange the accepting states and the rejecting states, that is, Q \Qacc will
be the set of accepting states of M̄ . If w ∈ L(M), then M̄ will indeed reject
w, since the accepting computation of M on w is turned into a rejecting
one of M̄ . If w /∈ L(M), there is a problem: A rejecting computation of
M on w is turned into an accepting computation of M̄ on w. This is �ne.
But w /∈ L(M) can also mean that there is an un�nished computation of
M on w. But then the computation of M̄ on w will also be un�nished and
therefore w /∈ L(M̄). The next lemma shows how to make the transition
function a total function. Once we have done this, there are no un�nished
computations any more and our construction above will work.

Lemma 1.6 Let M = (Q,Σ, δ, q0, Qacc) be a �nite automaton. Then there
is a �nite automaton M ′ = (Q′,Σ, δ′, q0, Qacc) such that δ′ is a total function
and L(M) = L(M ′).

5We always assume that the universe Σ∗ of L is known, so it is clear what the comple-
ment is.
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1.3. Closure properties, part I 21

Proof overview: We add an extra dead-lock state to Q. Whenever δ is not
de�ned, M ′ enters the dead lock state instead and can never leave this state.

Proof. De�ne Q′ = Q ∪ {dead-lock}, where dead-lock /∈ Q. For q ∈ Q
and σ ∈ Σ, we set

δ′(q, σ) =

{
δ(q, σ) if δ(q, σ) is de�ned,

dead-lock otherwise, and

δ′(dead-lock, σ) = dead-lock.

δ′ is obviously total. If w ∈ Σ∗ is accepted by M , then the computation of
M ′ on w is the same as the one of M on w. Thus M ′ also accepts w. If w is
rejected by M , then there is a rejecting computation of M on w or there is
no �nished computation of M at all on w. In the �rst case, the computation
is a rejecting computation of M ′ on w, too. In the latter case, δ∗(q0, w) is
unde�ned. But this means that M ′ will enter dead-lock, which it cannot
leave. Thus there is a rejecting computation of M ′ on w.

Next we try to show that REG is closed under intersection and union, i.e,
if A,B ⊆ Σ∗ are regular languages, so are A ∪ B and A ∩ B. (We assume
that A and B are languages over the same alphabet Σ. If this is not the
case, we take the union of the alphabets of A and B as the new alphabet.)
The construction that we will use is called product automaton. The product
construction also works for the set di�erence A\B. This in particular implies
that REG is closed under complementation, since Σ∗ is regular. (How does an
automaton for Σ∗ look like? Hint: you can do it with one state.) If M1 and
M2 with states Q1 and Q2 are automata with L(M1) = A and L(M2) = B,
then the product automaton will have states Q1 ×Q2. This automaton can
simulate M1 and M2 in parallel. We use the �rst component of the tuples
to simulate M1 and the second to simulate M2.

Lemma 1.7 LetM1 = (Q1,Σ, δ1, q0,1, Qacc,1) andM2 = (Q2,Σ, δ2, q0,2, Qacc,2)
be two �nite automata such that δ1 and δ2 are total functions. Then the tran-
sition function ∆ de�ned by

∆ : (Q1 ×Q2)× Σ → Q1 ×Q2

((q1, q2), σ) 7→ (δ1(q1, σ), δ2(q2, σ))

ful�lls

∆∗((q1, q2), w) = (δ∗1(q1, w), δ∗2(q2, w))

for all q1 ∈ Q1, q2 ∈ Q2, and w ∈ Σ∗.
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22 1. Finite automata and regular languages

Proof. The proof is by induction on |w|. We have ∆∗((q1, q2), ε) =
(q1, q2).

For the induction step, let w = w′σ. We have

∆∗((q1, q2), w) = ∆(∆∗((q1, q2), w′), σ)

= ∆((δ∗1(q1, w
′), δ∗2(q2, w

′)), σ)

= (δ1(δ∗1(q1, w
′), σ), δ2(δ∗2(q2, w

′), σ))

= (δ∗1(q1, w), δ∗2(q2, w)).

The second equality follows from the induction hypothesis.

Theorem 1.8 REG is closed under intersection, union, and set di�erence,
i.e, if A,B ⊆ Σ∗ are regular languages, then A ∩ B, A ∪ B, and A \ B are
regular, too.

Proof. Let M1 = (Q1,Σ, δ1, q0,1, Qacc,1) and M2 = (Q2,Σ, δ2, q0,2, Qacc,2)
be �nite automata with L(M1) = A and L(M2) = B. We may assume that
δ1 and δ2 are total functions. Let M = (Q1 ×Q2,Σ,∆, (q0,1, q0,2), F ) where
∆ is the function as de�ned in Lemma 1.7.

By de�ning the set of accepting states F appropriately, M will recognize
A ∩ B, A ∪ B, or A \ B. For A ∩ B, we set F = Qacc,1 × Qacc,2. By
Lemma 1.7, ∆∗((q0,1, q0,2), w) = (δ∗(q0,1, w), δ∗(q0,2, w)). We have w ∈ A∩B
i� δ∗(q0,1, w) ∈ Qacc,1 and δ

∗(q0,2, w)) ∈ Qacc,2. Thus, the choice for F above
is the right one. For A∪B, we set F = Q1×Qacc,2 ∪Qacc,1×Q2. For A \B,
we set F = Qacc,1 × (Q2 \Qacc,2).

1.4 Exercises

Basic exercises

Exercise 1.3 Construct automata for the following languages.

1. A = {x ∈ {0, 1}∗ | x contains at most three 1's}

2. B = {x ∈ {0, 1}∗ | the number of 1's in x is divisible by 4}

Exercise 1.4 Prove that every �nite language is regular.

Exercise 1.5 Construct the product automaton M1 ×M2 of the following
two �nite automata M1 and M2. Choose the accepting states in such a way
that x ∈ L(M1 ×M2) if exactly one of M1 and M2 accepts x (�symmetric
di�erence�).
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Intermediate exercises

Exercise 1.6 Consider the following language

C = {x ∈ {0, 1}∗ | x interpreted as a binary number is divisible by 3}.

The least-signi�cant bit can be the left-most bit of x or the right-most bit
of x. Prove that in both cases, C is regular. To simplify matters, we allow
leading 0's, so for instance, the strings ε, 0, 00, . . . are all valid encodings of
the natural number 0.

Exercise 1.7 Prove that for every regular language L, the following lan-
guage is regular:

Lpf = {x ∈ L | no proper pre�x of x is in L}.

Advanced exercises

For x, y ∈ {0, 1}∗, we write x � y if x is a substring of y. A language
L ⊆ {0, 1}∗ is called substring closed, if y ∈ L and x � y implies x ∈ L.

Exercise 1.8 1. Prove the following: If A ⊆ {0, 1}∗ is in�nite, then there
are x, y ∈ A with x 6= y and x � y.

2. Prove that every substring closed language L ⊆ {0, 1}? is regular.
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2 Nondeterministic �nite au-

tomata

In the last chapter, we showed that REG is closed under the operations
complementation, union, and intersection. In this chapter, among other
things, we want to show its closure under concatenation and Kleene closure.

De�nition 2.1 Let A,B ⊆ Σ∗.

1. The concatenation of A and B is

AB = {wx | w ∈ A, x ∈ B}.

2. The Kleene closure of A is

A∗ = {x1x2 . . . xm | m ≥ 0 and xµ ∈ A, 1 ≤ µ ≤ m}.

The concatenation AB of A and B is the set of all words that consist of
one word from A concatenated with one word from B. The Kleene closure
is the set of all words that we get when we concatenate an arbitrary number
of words (this includes zero words) from A. The concatenation of zero words
is the empty word by de�nition.

Example 2.2 1. {aa, ab}{a, bb} = {aaa, aabb, aba, abbb}.

2. {aa, b}∗ = {ε, aa, b, aaaa, aab, baa, bb, aaaaaa, aaaab, . . . } is the set of
all words in which a's always occur in pairs.

Exercise 2.1 Prove the following:

1. ∅A = A∅ = ∅ for all A ⊆ Σ∗.

2. ∅∗ = {ε} and {ε}∗ = {ε}.

Exercise 2.2 Prove the following:

1. If A,B ⊆ Σ∗ are �nite, then |AB| ≤ |A| · |B|.

2. If A 6= ∅ and A 6= {ε}, then A∗ is in�nite.

24
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2.1 Nondeterminism

When we showed that REG is closed under union or intersection, we took
two automata for A,B ∈ REG and constructed another automaton out of
these two automata for A∩B or A∪B. Here is an attempt for AB: w ∈ AB
if there are x ∈ A and y ∈ B such that w = xy. So we could �rst run A on x
and then B on y. The problem is that we do not know when we leave x and
enter y. The event that A enters an accepting state is not enough; during
the computation on x, A can enter and leave accepting states several times.

For instance, let A = {x ∈ {0, 1}∗ | the number of 0's in x is even} and
B = {y ∈ {0, 1}∗ | the number of 1's in y is odd}. How does an automata
for AB look like? In a �rst part, we have to count the 0's modulo 2. At
some point, we have to switch and count the 1's modulo 2. Figure 2.1 shows
an �automaton� for AB. The part consisting of the states 0-even and 0-odd
counts the 0's modulo 2. From the state 0-even, we can go to the second
part of the automaton consisting of the states 1-even and 1-odd. This part
counts the number of 1's modulo 2. The state 0-even is left by two arrows
that are labeled with 0 and two arrows that are labeled with 1. Such an
automaton is called nondeterministic. The automaton accepts a word if
there is a sequence of choices such that the automaton ends in an accepting
state. Among other things, we use nondeterminism here to construct a
nondeterministic �nite automaton for AB. The amazing thing is, that we
can simulate a nondeterministic �nite automaton by a deterministic one.

Another way to introduce nondeterminism are ε-transitions. These are
arrows in the transition diagram that are labeled with ε. This means that the
automaton may choose to make the ε-transition without reading a symbol
of the input. Figure 2.2 shows an automaton with ε-transitions for AB. ε-
transitions do not enhance the power of nondeterministic automata, but it
allows us to present automata in a more compact way. In our toy example,
we only save one edge, but in bigger examples, the transition diagram can
become much more readable by using ε-transitions.

2.1.1 Formal de�nition

For a set S, P(S) denotes the power set of S, that is the set of all subsets
of S. For an alphabet Σ, Σε denotes the set Σ ∪ {ε}.

De�nition 2.3 A nondeterministic �nite automaton is described by a 5-
tuple M = (Q,Σ, δ, q0, Qacc):

1. Q is a �nite set, the set of states.

2. Σ is a �nite set, the input alphabet.

3. δ : Q× Σε → P(Q) is the transition function.
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Figure 2.1: A nondeterministic �nite automaton for AB.
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Figure 2.2: A nondeterministic �nite automaton with ε-transitions for AB.
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The golden rule of nondeterminism

Nondeterminism is a useful theoretical concept, but we do not not
know any physical realisation of it.a

Nondeterminism is interesting because it is useful tool: We can model

di�erent choices. We do not know how to build an nondeterministic �nite

automaton in reality.

aMaybe the NSA does. Hopefully not . . .

4. q0 ∈ Q is the start state.

5. Qacc ⊆ Q is the set of accepting states.

If δ is only a function Q× Σ→ P(Q), then M is called a nondeterministic
�nite automaton without ε-transitions.

To distinguish between nondeterministic �nite automata and the �nite
automata of the last chapter, we call the latter ones deterministic �nite au-
tomata. Deterministic �nite automata are a special case of nondeterministic
�nite automata. Formally, this is not exactly true. But from the transition
function δ : Q×Σ→ Q of a deterministic �nite automata, we get a transition
function Q × Σ → P(Q) by (q, σ) 7→ {δ(q, σ)} for all q ∈ Q, σ ∈ Σ. This
means that the transition function now does not map to states but to sets
consisting of a single state.

2.1.2 Computations and computation trees

A nondeterministic �nite automaton starts in q0. Then it has several choices.
There is the possibility to make an ε-transition and enter a new state without
reading a symbol. Or it may read a symbol and go to one of several states.
On one word w, there may be plenty of computations now.

De�nition 2.4 Let M = (Q,Σ, δ, q0, Qacc) be nondeterministic �nite au-
tomaton. Let w ∈ Σ∗, w = w1 . . . wn.

1. s0, s1, . . . , sm ∈ Q is called a computation of M on w if we can write
w = u1u2 . . . um

1 with uµ ∈ Σε such that

(a) s0 = q0.

(b) for all 0 ≤ µ < m, sµ+1 ∈ δ(sµ, uµ+1).

1m can be larger than n. In this case, there are indices i1, . . . , in ∈ {1, . . . ,m} such
that ui1 . . . uin = w. All other uj = ε.
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28 2. Nondeterministic �nite automata

2. The computation above is called an accepting computation if sm ∈
Qacc. Otherwise, it is called a rejecting computation.

Recall that xy = xεy for any two words x, y. In the decomposition
w = u1u2 . . . um above, we have inserted ε at the the places where M wants
to make an ε-transition.

De�nition 2.5 1. A nondeterministic �nite automatonM accepts a word
w if there is an accepting computation of M on w. Otherwise, M re-
jects w.

2. L(M) = {w ∈ Σ∗ |M accepts w} is the language recognized by M .

Note that in the de�nition above, there needs to be at least one accepting
computation for M accepting w. There could be more, and there could be
rejecting as well as un�nished computations, too.

We do not de�ne nondeterministic regular languages since we will show
below that for every nondeterministic �nite automaton there is a determin-
istic one that recognizes the same language; a really surprising result.

LetM = (Q,Σ, δ, q0, Qacc). Again, we would also like to extend the tran-
sition function δ to words in Σ∗ as we did for deterministic �nite automata.
But this is not as easy. We �rst de�ne the ε-closure of the transition function.
For q ∈ Q and σ ∈ Σ, δ(ε)(q, σ) denotes all states that we can reach from
q by making an arbitrary number of ε-transitions and then one transition
that is labeled with σ. (And we are not allowed to make any ε-transitions
afterwards.) Formally,

δ(ε) : Q× Σ → P(Q)
(q, σ) 7→ {r | there are k ≥ 0 and s0 = q, s1, . . . , sk such that

sκ+1 ∈ δ(sκ, ε), 0 ≤ κ < k, and r ∈ δ(sk, σ)}.

For a subset R ⊆ Q of the states, R(ε) denotes all the states in Q from which
we can reach a state in R just by ε-transitions. Formally,

R(ε) = {r ∈ Q | there are k ≥ 0 and s0 = r, s1, . . . sk such that
sκ+1 ∈ δ(sκ, ε), 0 ≤ κ < k, and sk ∈ R.}.

Lemma 2.6 If M = (Q,Σ, δ, q0, Qacc) is a nondeterministic �nite automa-

ton, then M ′ = (Q,Σ, δ(ε), q0, Q
(ε)
acc) is a nondeterministic �nite automaton

without ε-transitions such that L(M) = L(M ′).

Proof. M ′ obviously does not have ε-transitions. Assume thatM accepts
w. Then we can write w = u1u2 . . . um with uµ ∈ Σε, and there are states
s0, s1, . . . , sm with s0 = q0, sµ+1 ∈ δ(sµ, uµ) for 0 ≤ µ < m, and sm ∈ Qacc.
Let i1, . . . , in be indices such that uiν ∈ Σ for 1 ≤ ν ≤ n, i.e., uiν is wν , the
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νth symbols of w. Let i0 = 0. Then δ(ε)(siν , uiν+1) = siν+1 for 0 ≤ ν < n

and sin ∈ Q
(ε)
acc by the construction of δ(ε) and Q

(ε)
acc. Thus M ′ accepts w,

too.
Conversely, if M ′ accepts w = w1w2 . . . wn with wν ∈ Σ for 1 ≤ ν ≤ n,

then M also accepts w: There are states s0, . . . , sn such that s0 = q0 and

δ(ε)(sν , wν+1) = sν+1 for 0 ≤ ν < n, and sn ∈ Q
(ε)
acc. For all 0 ≤ ν < n,

there are states sν,0 = sν , sν,1, . . . , sν,jν such that δ(sν,h, ε) = sν,h+1, 0 ≤
h < jν , and δ(sν,jν , wν+1) = sν+1 by the construction of δ(ε). And there
are states sn,0 = sn, sn,1, . . . , sn,jn such that δ(sn,h, ε) = sn,h+1, 0 ≤ h < jn,

and sn,jn ∈ Qacc by the construction of Q
(ε)
acc. All these intermediate states

together form an accepting computation of M on w.

Remark 2.7 All �nished computations of a �nite automaton without ε-
transitions on a given input have the same length. Their number is bounded
by |Q|n.

For a �nite automaton M = (Q,Σ, δ, q0, Qacc), the extended transition
function δ∗ : Q× Σ∗ → P(Q) is de�ned inductively as follows:

δ∗(q, ε) = {q} for all q ∈ Q,
δ∗(q, wσ) =

⋃
r∈δ∗(q,w) δ

(ε)(r, σ) for all q ∈ Q, w ∈ Σ∗, σ ∈ Σ.

δ∗(q, x) are all the states that we can reach if we start from q, read x, and
do not allow any ε-transition after reading the last symbol of x. Similar
deterministic �nite automata, we have

M accepts a word x ⇐⇒ δ∗(q0, x) ∩Q(ε)
acc.

The righthand side simply means that we can reach a state by reading x
from which we can reach an accepting state by ε-transitions.

It might be a little unsatisfying that δ∗ maps states to sets of states. We
can extend δ∗ to a function P(Q)× Σ∗ → P(Q) by simply setting

δ∗(R, x) =
⋃
r∈R

δ∗(r, x).

Strictly speaking, the functions δ∗ on each side are di�erent functions. How-
ever, by identifying a state r with the set {r} of size one, we can embed the
domain Q× Σ∗ into P(Q)× Σ∗.

It is sometimes easier to represent the computations of a nondeterministic
�nite automaton M by a computation tree. We only do this for ε-transition
free automata here. The computation tree of M on a word w is a rooted
tree whose nodes are labeled. The root is labeled with q0. For all states
s ∈ δ(q0, w1), we add one child to q0. This child is labeled with s. Consider
one such child and let its label be s0. For each state r ∈ δ(s0, w2), we add
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30 2. Nondeterministic �nite automata

one child to s0 with label r and so forth. Even if there is already a node with
the label r, we insert a new child, so one label can (and will) appear several
times. The depth of the tree is bounded by n. The states of every level i of
the computation tree are precisely δ∗(q0, w≤i) where w≤i is the pre�x of w
of length i. Every path of length n from the root to a leaf corresponds to a
�nished computation ofM on w and for every �nished computation ofM on
w, there is such a path. M accepts w if and only if there is a path of length
n from the root to some leaf that is labeled by an accepting state in the
computation tree. Figure 2.3 shows the computation tree of the automaton
from Figure 2.1 on the word 01011.

2.2 Determinism versus nondeterminism

Theorem 2.8 Let M = (Q,Σ, δ, q0, Qacc) be a nondeterministic �nite au-
tomaton. Then there is a deterministic �nite automaton M̂ = (Q̂,Σ, δ̂, q̂0, Q̂acc)
such that L(M) = L(M̂).

Proof overview: By Lemma 2.6, we can assume that M does not have
any ε-transitions. Look at the computation tree of M on some word w of
length n. Each level i of the tree contains all the states that M can reach
after reading the �rst i symbols of w. If the nth level contains a state from
Qacc, then M accepts w. A deterministic automaton has to keep track of all
the states that are in one level. But it has to store them in one state. The
solution is to take P(Q), the power set of Q, as Q̂, the set of states of M̂ .

Proof. By Lemma 2.6, we can assume that M does not have any ε-
transitions. We set Q̂ = P(Q) and q̂0 = {q0}. We de�ne the transition
function δ̂ as follows:

δ̂(R, σ) =
⋃
r∈R

δ(r, σ) for all R ∈ Q̂ and σ ∈ Σ.

(Note that δ is a function Q̂ × Σ → Q̂. It maps into the power set of Q
but not into the power set of Q̂. Thus M̂ is deterministic!) Finally, we set
Q̂acc = {R ∈ Q̂ | R ∩Qacc 6= ∅}.

We now show by induction in the length of w ∈ Σ∗ that for all R ⊆ Q
and w ∈ Σ∗,

δ̂∗(R,w) =
⋃
r∈R

δ∗(r, w).

For w = ε, δ̂∗(R,w) = R =
⋃
r∈R δ

∗(r, w). Now let w = xσ with σ ∈ Σ. We
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0-even

0-odd 1-even

0-odd 1-odd

0-even 1-odd

0-even 1-odd 1-even

0-even 1-odd 1-even 1-odd

Figure 2.3: The computation tree of the automaton from Figure 2.1 on the
word 01011. The root is the start state 0-even. Then the automaton reads a
0. It has two possibilities: either it moves to 0-odd or to 1-even. These two
possibilities are represented by the two children. There are four di�erent
computations on 01011, two of them are accepting. These two accepting
con�gurations correspond to splitting 01011 either as ε ∈ A and 01011 ∈ B
or 0101 ∈ A and 1 ∈ B.
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32 2. Nondeterministic �nite automata

have

δ̂∗(R,w) = δ̂(δ̂∗(R, x), σ)

= δ̂(
⋃
r∈R

δ∗(r, x), σ)

=
⋃

s∈
⋃
r∈R δ

∗(r,x)

δ(s, σ)

=
⋃
r∈R

⋃
s∈δ∗(r,x)

δ(s, σ)

=
⋃
r∈R

δ∗(r, w)

Above, the second equality follows from the induction hypothesis and the
third equality follows from the de�nition of δ̂. For the fourth equality, note
that the union in the third line and the fourth line is over the same set of s.
The last equatily follows from the de�nition of δ∗ for nondeterministic �nite
automata. Note that since we removed ε-transitions �rst, δ(ε) = δ.

M̂ accepts w i� δ̂∗(q̂0, w) ∈ Q̂acc. M accepts w i� δ∗(q0, w) ∩ Qacc 6= ∅.
From the de�nition of Q̂acc it follows that M̂ accepts w i� M accepts w.
Thus L(M) = L(M ′).

Exercise 2.3 Apply the power set construction to the following automaton:

S

0, 1

X

1

1
A

0, 1

0

Which language does the automaton recognize?

Somehow one feels cheated when seeing the subset construction for the
�rst time, but it is correct. The deterministic �nite automaton pays for being
deterministic by a huge increase in the number of states. If the nondetermin-
istic automaton has n states, the deterministic automaton that we construct
has 2n states and there are examples where this is (almost) neccessary. Here
is one such example.

Example 2.9 For n ∈ N, consider the language

Sn = {w ∈ {0, 1}∗ | the nth symbol from the end is 0}.

There is a nondeterministic �nite automaton for Sn that has n + 1 states,
see Figure 2.4 for n = 3. A deterministic �nite automaton could store the
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0

0/1

1
0

2
0/1

3
0/1

Figure 2.4: A nondeterministic �nite automaton for S3.

last n symbols that it has seen, i.e., Q = {0, 1}n. (Yes, states can also just be
strings. We just have to use a �nite set.) The transition function is de�ned
by δ(σ1 . . . σn, τ) = σ2 . . . σnτ for all σ1 . . . σn ∈ Q and τ ∈ Σ. The start
state is 1n and the accepting states are all states of the form 0σ2 . . . σn. This
automaton has 2n states. We will see soon that this is neccessary.

2.3 Closure properties, part II

Theorem 2.10 REG is closed under concatenation and Kleene closure, i.e.,
for all A,B ∈ REG, we have AB,A∗ ∈ REG.

Proof. Let M = (Q,Σ, δ, q0, Qacc) be a deterministic �nite automaton
for A and M ′ = (Q′,Σ, δ′, q′0, Q

′
acc) be a deterministic �nite automaton for

B. W.l.o.g we can assume that Q ∩Q′ = ∅.
For AB, we construct an automaton N1 = (Q ∪ Q′,Σ, γ1, q0, Q

′
acc). We

connect each accepting state of M by an ε-transition to the start state q′0 of
M ′. Therefore, N1 will be nondeterministic. Formally,

γ1(q, σ) =


{δ(q, σ)} if q ∈ Q and σ 6= ε,

{δ′(q, σ)} if q ∈ Q′ and σ 6= ε,

{q′0} if q ∈ Qacc and σ = ε,

undef. otherwise.

See also Figure 2.5. It is clear from the construction that L(N1) = AB: Let
x ∈ A and s0, . . . , sm be an accepting computation ofM on x. Furthermore,
let y ∈ B and s′0, . . . , s

′
n be an accepting computation of M ′ on y. Then

s0, . . . , sm, s
′
0, . . . , s

′
n is an accepting computation of N1 on xy. Note that

s0 = q0, sm ∈ Qacc, s
′
0 = q′0, and s

′
n ∈ Q′acc. By construction γ∗1(q0, x) = sm,

γ1(sm, ε) = q′0 and γ∗1(q′0, y) = s′n ∈ Q′acc. Therefore, xy ∈ L(N1). Since
x and y were arbitray, AB ⊆ L(N1). On the other hand, every accepting
computation of N1 can be split into an accepting computation ofM andM ′.
Thus we can conclude in a similar way that L(N1) ⊆ AB.

For A∗, we construct an automaton N2 = (Q ∪ {r},Σ, γ2, r,Qacc ∪ {r})
where r /∈ Q. The �rst idea is to insert an ε-transition from every accepting
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q0 ...

M

q′0

ε

ε ...

M ′

Figure 2.5: A schematic drawing of the automaton N1.

state to the start state. In this way, whenever we enter an accepting state,
N2 can either stop or add another word from A. This automaton recognizes
A+ = A∗ \ {ε}. To add ε to the language, one idea would be to make the
start state an accepting state, too. While this adds ε to the language, this
does not work (cf. Exercise 2.4). Instead, we add a new start state r that
is an accepting state. This adds ε to the language. From r, there is an
ε-transition to the old start state q0 of M . Formally,

γ2(q, σ) =


δ(q, σ) if q ∈ Q and σ 6= ε,

q0 if q ∈ {r} ∪Qacc and σ = ε,

undef. otherwise.

See Figure 2.6 for a schematic drawing of the construction. It is clear from
the construction that L(N2) = A∗. The formal proof is similar to the �rst
part.

Remark 2.11 For simplicity, we assumed that M and M ′ in the construc-
tions above are deterministic. The same construction also works for nonde-
terministic automata.

Exercise 2.4 Give an example that in the proof above, we need the extra
state r in N2, i.e., show that it is not correct to create an ε-transition from
each accepting state to the start state and make the start state an accepting
state, too.

2.4 Exercises

Basic exercises

Exercise 2.5 Prove that the following languages are regular:

© Markus Bläser 2007�2021



2.4. Exercises 35

r q0
ε

ε

ε

...

M

Figure 2.6: A schematic drawing of the automaton N2.

1. A = {x ∈ {0, 1}∗ | x starts with 00 or ends with 11},

2. B = {x ∈ {0, 1}∗ | x = x1x2 . . . x`, ` ≥ 4, x1 = x`−1 und x2 = x`}.
(The �rst two symbols are the same as the last two symbols.)

Exercise 2.6 Construct the computation trees of the following automaton
on ε, 101, and 01010:

S

0, 1

X

1

1
A

0, 1

0

Which language is recognized by the automaton?

Exercise 2.7 Construct a nondeterministic �nite automaton without ε-transitions
equivalent to the automaton below. Which language does the automaton rec-
ognize?

S 0

12

0

1, ε

ε

0, 1, ε
0

0
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Intermediate exercises

Exercise 2.8 Prove that for every regular language L, the following lan-
guages are regular:

1. Lrev = {xrev | x ∈ L}.
Here for a word x = x1x2 . . . x`, x

rev := x`x`−1 . . . x1.

2. L−0 = {xy | x0y ∈ L}.

3. Lrot = {x = x1 . . . x` | ∃k ≤ ` : xk+1 . . . x`x1 . . . xk ∈ L}.

Exercise 2.9 In Exercise 1.6, we looked at the set of all binary string that
represents a number when divisible by 3. In the solution, we obtained an
automaton with three states in the case when the left-most bit was the most-
signi�cant bit. Call this language S. What is Srev? What happens to the
automaton for S when you convert it into an automaton for Srev?

Exercise 2.10 A homomorphism is a mapping h : Σ? → Σ? such that
h(xy) = h(x)h(y) for all x, y ∈ Σ?.

1. Prove that every homomorphism ful�lls h(ε) = ε. Prove that h is
uniquely determined by the values h(σ) for σ ∈ Σ.

2. Let L ⊆ Σ? be regular. Prove that h(L) = {h(x) | x ∈ L} is regular,
too.

3. Let L ⊆ Σ? be regular. Prove that h−1(L) = {x | h(x) ∈ L} is regular,
too.

Advanced exercises

Exercise 2.11 Let L be a regular language, prove that the following language

LH = {x | ∃y : xy ∈ L and |x| = |y|}

is regular, too.

More general, a function f is regularity preserving if for all regular L, the
language {x | ∃y : xy ∈ L and f(|x|) = |y|} is regular, too. The previous
exercise shows that the identity function is regularity preserving.

A set U ⊆ N is called ultimately periodic, if there are numbers N and
p such that for all n ≥ N , n ∈ U i� n + p ∈ U . The number p is called a
period.

Seiferas and McNaughton [SM76] prove the following theorem:

Theorem 2.12 A function f : N → N is regularity preserving i� for all
ultimately periodic U , f−1(U) = {u | f(u) ∈ U} is ultimately periodic, too.
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Exercise 2.12 1. Prove the following: If M is a determinisitic �nite
automaton with k states over an alphabet Σ with L(M) 6= ∅,Σ∗, then
there are strings x ∈ L(M) and y ∈ Σ?\L(M) with |x| < k and |y| ≤ k.

2. Prove that if M is nondeterminisic, then there is a string x ∈ L(M)
mit |x| < k.

3. Construct an nondeterministic �nite automaton M with k states over
the alphabet {1} such that the shortest string y ∈ {1}? \ L(M) has
length at least k + 1.

Hint: k = 8 works.

4. Generalize the construction of part 3 and construct nondeterministic
�nite automata with an arbitrarily large number of states k such that
the length of the shortest string in {1}? \ L(M) is superpolynomial in
k.

Hint: Chinese remainder theorem
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3 Regular expressions

3.1 Formal de�nition

3.1.1 Syntax

De�nition 3.1 Let Σ be an alphabet and assume that the symbols �(�, �)�,
�∅�, �ε�, �+�, and �∗� do not belong to Σ. Regular expressions over Σ are
de�ned inductively:

1. The symbols ∅ and ε are regular expressions.

2. For each σ ∈ Σ, σ is a regular expression.

3. If E and F are regular expressions, then (E + F ), (EF ) and (E∗) are
regular expressions.

Above ∅ and ε are symbols that will represent the empty set and the
set {ε}, but they are not the empty set or the empty word themselves. But
since these underlined symbols usually look awkward, we will write ∅ instead
of ∅ and ε instead of ε. I suppose that the reader is old enough to deal with
this. It is usually clear from the context whether we mean the symbols for
the empty set and the empty word or the objects themselves.

3.1.2 Semantics

De�nition 3.2 Let E be a regular expression. The language L(E) described
by E is de�ned inductively:

1. If E = ∅, then L(E) = ∅.
If E = ε, then L(E) = {ε}.

2. If E = σ for some σ ∈ Σ, then L(E) = {σ}.

3. If E = (E1 + E2), then L(E) = L(E1) ∪ L(E2).
If E = (E1E2), then L(E) = L(E1)L(E2).
If E = (E∗1), then L(E) = L(E1)∗.

The symbol ∅ represents the empty set and the symbol ε represents the
set that contains solely the empty word. A symbol σ ∈ Σ represents the
set that contains the symbol itself. These three cases form the basis of the
de�nition. Next come the cases where E is composed of smaller expressions.
The operator �+� corresponds to the union of the corresponding languages,
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3.1. Formal de�nition 39

the concatenation of the expression corresponds to the concatenation of the
corresponding languages and the �∗�-operator stand for the Kleene closure.
Union, concatenation, and Kleene closure are also called the regular opera-
tions.

Why did we put all these brackets around the expressions in the inductive
de�nition? Well, this is to ensure that L(E) is well-de�ned. The brackets
ensure that there is only one way how to write E as a composition of one or
two smaller regular expressions. (These brackets encode a so-called deriva-
tion tree, a concept that we will study in the fourth part.) For instance,
if there were no brackets, then we could write L(EFG) = L(E)L(FG) or
L(EFG) = L(EF )L(G) according to the above de�nition and it is not clear
whether the righthand sides are the same. In fact they are, but this needs a
proof, given in the next section. However, with brackets, it is clear which of
the two righthand sides we mean.

Excursus: Regular expressions in Unix

Unix uses regular expressions though with a di�erent notation and some extensions
(which are just syntactic sugar):

� The dot �.� can mean any one symbol. This can be replaced by σ1 + σ2 +
· · · + σ`, if Σ = {σ1, . . . , σ`}. But the dot is very handy, since the alphabet
in Unix is pretty large.

� [τ1τ2 . . . τk] is the union of the k symbols, i.e, in our notation it is τ1 + τ2 +
· · ·+ τk.

� Since the ASCII symbols are ordered, one can also write something like [a-z],
which means all symbols between a and z.
(Warning: this is not really true any more since the order nowadays depends
on the locale. So maybe fancy characters like ä could occur between a and
z. Therefore, shortcuts like [:lower:] (all lower case letters) have been
introduced.)

� The union of two expressions is denoted by |.

� E∗ is the Kleene closure of E, E+ stands for E+ := EE∗ (that is, the
concatenation of any positive number of words from L(E)), and E{m} stands
for EE . . . E︸ ︷︷ ︸

m times

.

For instance, elements of programming languages, so-called tokens are usually
elements from a regular language.1

The tool lex performs the so-called lexical analysis. Basically, it gives us the
tokens from the ASCII text. We give lex a list of regular expressions together
with an action to be performed and then lex scans the source code for occurences

1But notice that the languages of all valid source codes are usually not regular. Simple
languages, like the WHILE language, which we will introduce in the next part, are usually
context-free (type-2 in the Chomsky hierarchy), a concept that we will meet at the end of
this book. More overloaded ones like C++ or JAVA usually are even more complicated
to describe.
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of elements of the regular languages. Whenever one is found, it executes the cor-
responding action (like inserting a new entry in the list of used variables, etc.).

3.2 Algebraic laws

Like addition and multiplication over, say, the integers ful�ll several algebraic
laws, the regular operations ful�ll an abundance of such laws, too. If we write
17 + 4 = 21, then this means that the natural numbers on the left-hand side
and the right-hand side are the same; though the words on both side are not:
the left-hand side is the concatenation of the four symbols 1, 7, +, and 4, the
right hand side is the concatenation of 2 and 1. In the same way, if we write
E = F for two regular expressions, then this means that L(E) = L(F ), i.e.,
the two expressions describe the same language. Like x + y = y + x holds
for all natural numbers x and y, we can formulate such laws for regular
expressions.

Theorem 3.3 For all regular expressions E, F , and G, we have

1. E + F = F + E (commutativity law for union),

2. (E + F) + G = E + (F + G) (associativity law for union),

3. (EF)G = E(FG) (associativity law for concatenation),

4. ∅+ E = E + ∅ = E (∅ is an identity for union),

5. εE = Eε = E (ε is the identity for concatenation),

6. ∅E = E∅ = ∅ (∅ is an annihilator for concatenation),

7. E + E = E (union is idempotent),

8. (E + F)G = (EG) + (FG) (right distributive law),

9. E(F + G) = (EF) + (EG) (left distributive law),

10. (E∗)∗ = E∗,

11. ∅∗ = ε,

12. ε∗ = ε.

Proof. We only prove the �rst, sixth, and tenth item. The rest is left as
an exercise.

For the �rst item, we use the fact that the union of sets is commutative:
L(E + F ) = L(E) ∪ L(F ) = L(F ) ∪ L(E) = L(F + E).
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Item 6: For any two languages A and B, AB is the set of all words w = ab
with a ∈ A and b ∈ B. If one of A and B is empty, then no such word w
exists, thus AB = ∅ in this case.

Item 10: Let L := L(E). L∗ ⊆ (L∗)∗ is clear, since (L∗)∗ is the set of
all words that we get by concatenating an arbitrary number of words from
L∗, in particular of one word. To show that (L∗)∗ ⊆ L∗, let x1, . . . , xn ∈
L∗. This means that we can write every xν as yν,1 . . . yν,jν with yν,i ∈ L
for 1 ≤ i ≤ jν , 1 ≤ ν ≤ n. This means that we can write x1 . . . xn =
y1,1 . . . y1,j1y2,1 . . . yn−1,jn−1yn,1 . . . yn,jn ∈ L∗.

Exercise 3.1 1. Prove the remaining parts of Theorem 3.3.

2. Construct two regular expressions E and F with EF 6= FE.

Exercise 3.2 Prove the following identities:

1. (E + F )∗ = (E∗F ∗)∗.

2. ε+ EE∗ = E∗.

3. (ε+ E)∗ = E∗.

3.2.1 Precedence of operators

In the de�nition of regular expressions, whenever we built a new expression
out of two other, we placed brackets around the expression. Since these
brackets often make the expressions hard to read, we would like to omit some
of them. Note that the algebraic laws proven above help us: For instance,
since concatenation is associative, that is, (EF )G = E(FG), we can simply
write EFG instead. L(EFG) is still well-de�ned: There are now two ways
how to compute L(EFG), corresponding to the two expressions (EF )G and
E(FG), but both ways will give the same results. The same can be done
with union.

We can save some more brackets by making conventions about the order
of precedence of operators:

� Kleene closure ∗ has the highest precedence. That is, it applies to
the smallest sequence of symbols to its left that form a valid regular
expression.

� Next comes concatenation.

� Union has the lowest priority.

This is just like the precedence of exponentiation over multiplication over
addition in arithmetic expressions.

We can always go back to an expression that is fully bracketed, however,
not in a unique way. We make the convention to group concatenation and
unions from left to right, but any other choice is �ne, too.
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Example 3.4 Consider the expression 01∗0 + 0 + ε. It is transformed back
into ((((0(1∗))0) + 0) + ε).

3.3 Regular expressions characterize regular languages

As the name suggests, regular expression characterize�surprise, surprise!�
exactly the regular languages. This means that for every regular expression
E, L(E) is regular. And conversely, if L is regular, then we can �nd a regular
expression E such that L(E) = L.

Theorem 3.5 If E is a regular expression, then L(E) ∈ REG.

Proof overview: The proof is done by structural induction. We �rst
prove the statement of the theorem for the simple regular expressions (De�-
nition 3.1, 1. and 2.). This is the induction basis. In the induction step, we
have prove the statement for the expressions E1 +E2, E1E2, and E

∗
1 and the

induction hypothesis is that L(E1) and L(E2) are regular. We can reduce
structural induction to �regular� induction by viewing it as induction in the
number of applications of the operators �+�, concatenation, and �∗�.

Proof. Induction base: We have to construct automata that accept the
languages ∅, {ε}, and {σ}. But this is easy (see also Exercise 3.3).
Induction step: We are given E = E1 + E2, E = E1E2, or E = E∗1 and
we know that L(E1) and L(E2) are regular. We have to show that L(E) =
L(E1) ∪ L(E2) or L(E) = L(E1)L(E2) or L(E) = L(E1)∗, respectively, is
regular. But this is clear, since we already showed that REG is closed under
union, concatenation and Kleene closure.

Exercise 3.3 Construct �nite automata that accept the languages ∅, {ε},
and {σ} for σ ∈ Σ.

Theorem 3.6 For every deterministic �nite automatonM = (Q,Σ, δ, q0, Qacc),
there is a regular expression E such that L(M) = L(E).

Proof overview: We assume that Q = {1, 2, . . . , n}. Assume that 1 is the
start state and j1, . . . , j` are the accepting states. For each pair i, j of states,
we will inductively de�ne expressions Eki,j , 0 ≤ k ≤ n, such that in the end,
L(Eni,j) is exactly the set of all strings w such that δ∗(i, w) = j, i.e, ifM starts
in i and reads w, then it ends in j. But then L(M) = L(En1,j1 + · · ·+En1,j`).

What does the superscript k mean? L(Eki,j) will be the set of all words such
that δ∗(i, w) = j and for each pre�x w′ of w with w′ 6= ε and w′ 6= w,
δ∗(i, w′) ≤ k, i.e, if M starts in i and reads w, then it ends in j and during
this computation,M only entered states from the set {1, . . . , k} (but the i in

© Markus Bläser 2007�2021



3.3. Regular expressions characterize regular languages 43

the beginning and the j in the end do not count). We will start with k = 0
and then go on by induction.

Proof. By induction on k, we construct expressions Eki,j such that

L(Eki,j) = {w | δ∗(i, w) = j and for each pre�x w′ of w

with w′ 6= ε and w′ 6= w, δ∗(i, w′) ≤ k} (3.1)

for all 1 ≤ i, j ≤ n and 0 ≤ k ≤ n.
Induction base: If k = 0, then M is not allowed to enter any intermediate
state when going from i to j. If i 6= j, then this means thatM can only take
an arc directly from i to j. Let σ1, . . . , σt be the labels of the arcs from i to j.
Then E0

i,j = σ1 + σ2 + · · ·+ σt with the convention that this means E0
i,j = ∅

if t = 0, i.e., there are no direct arcs from i to j. If i = j, then let σ1, . . . , σt
be the labels of all arcs from i to itself. Now we set E0

i,i = ε+ σ1 + · · ·+ σt.

It is clear from the construction that E0
i,j ful�lls (3.1).

Induction step: Assume that we have found regular expressions such that
(3.1) holds for some k. We have to construct the expressions Ek+1

i,j . A path
that goes from i to j such that all states in between are from {1, . . . , k+1} can
either go from i to j by only going through states from {1, . . . , k}. For this,
we know already a regular expression, namely Eki,k. Or, when going from i to
j, we go through k+ 1 exactly once. But we can view this as going from i to
k+1 and all intermediate states are from {1, . . . , k} and then going from k+1
to j and again, all intermediate states are from {1, . . . , k}. For the �rst part,
we have already designed a regular expression, namely Eki,k+1, but also for the

second part we have one, namely Ekk+1,j . Their concatenation, E
k
i,k+1E

k
k+1,j ,

describes all words such that the automaton started in i, goes only through
states {1, . . . , k+1} and only once through k+1, and ends in j. In general, if
we go from i to j and all intermediate states are from {1, . . . , k+1}, then we
go from i to k+1 and all intermediate states are from {1, . . . , k}, after that we
may go several times from k+1 to k+1 and all intermediate states are from
{1, . . . , k} and �nally we go from k + 1 to j and all intermediate states are
from {1, . . . , k}. The corresponding expression is Eki,k+1(Ekk+1,k+1)∗Ekk+1,j .

Altogether, we have Ek+1
i,j = Eki,j +Eki,k+1(Ekk+1,k+1)∗Ekk+1,j . It is clear that

L(Ek+1
i,k ) is a subset of the language on the right-hand side of (3.1). But also

the converse is true: Let x1, . . . , xs be all pre�xes of w (sorted by increasing
length) such that δ∗(i, xi) = k + 1, 1 ≤ i ≤ s, and de�ne yi by xi+1 = xiyi.
Then δ∗(i, x1) = k+1, δ∗(k+1, yi) = k+1 for 1 ≤ i < s, and δ∗(k+1, ys) = j
where ys ful�lls xsys = w. But this means that w ∈ L(Ek+1

i,j ). This proves
(3.1).

From (3.1), it follows that L(M) = L(En1,j1 + · · · + En1,j`) where Qacc =
{j1, . . . , j`}.
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Remark 3.7 The algorithm above does essentially the same as the Floyd�
Warshall algorithm (see e.g. [CLRS09, Chapter 25]) for computing all-pair
shortest paths. If we replace Ek+1

i,j = Eki,j+Eki,k+1(Ekk+1,k+1)∗Ekk+1,j by d
k
i,j =

min{dki,j , dki,k+1 + dkk+1,j}, we can compute the shortest distances between all
pairs of nodes.

3.4 Exercises

Basic exercises

Exercise 3.4 Convert the following regular expression into an equivalent
automaton: (a?b+ bc)?.

Exercise 3.5 Convert the following deterministic �nite automaton into an
equivalent regular expression:

1

a, b

2
b

3
a, b

b

Exercise 3.6 Construct regular expressions for the following languages:

1. A =
{
w ∈ {0, 1}∗ | w contains an even number of 0s

}
.

2. B =
{
w ∈ {0, 1}∗ | |w| is divisible by 3

}
.

3. Lk =
{
w ∈ {0, 1}∗ | the k-last symbol is a 1

}
Intermediate exercises

Exercise 3.7 Let k ∈ N be given. Construct a regular expression for the
following language:

Lk = {x ∈ Σ? | ∃i, j : 1 ≤ i ≤ i+ k < j ≤ j + k ≤ |x| und xi . . . xi+k = xj . . . xj+k}.
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4 The pumping lemma

To show that a language L is regular, it is su�cient to give a deterministic
�nite automaton M with L = L(M) or a nondeterministic one or a regular
expression. But how do we show that a language L is not regular? Are there
non-regular languages at all? Here is one example:

A = {0n1n | n ∈ N}.

If there were a �nite automaton for A, then it would have to keep track of
the number of 0's that it read so far and compare it with the number of 1's.
But with a �nite number of states, you can only store a �nite amount of
information. But M potentially has to be able to store an arbitrarily large
amount of information, namely n. (Warning! Never ever write this in an
exam! This is just an intuition. Maybe there is a way other than counting
to check whether the input is of the form 0n1n�there is not, but you have
to give a formal proof.)

4.1 The pumping lemma

Lemma 4.1 (Pumping lemma) Let L be a regular language. Then there
is an n > 0 such that for all words u, v, w with uvw ∈ L and |v| ≥ n, there are
words x, y, z with v = xyz and |y| > 0 such that for all i ∈ N, uxyizw ∈ L.

Proof overview: We choose n to be the number of states of a �nite automa-
ton M that recognizes L. Let |v| = n′ ≥ n. In the part of the computation
ofM on v, at least one state has to repeat by the pigeon hole principle. This
means that we have discovered a loop in the computation of the automaton.
By going through this loop i times instead of one time, we get the words
uxyizw.

Below, there is a automaton with uvw on the input tape. Below, there
are the states of M when moving from one cell to the next (written in two
lines because of the long indices). By the pigeon hole principle, two of them
are equal, say, sj1 = sj2 with j1 < j2. The word vj1+1 . . . vj2 between them
can be �pumped�.

. . . um v1 v2 . . . vn′ w1 . . .

sm sm+2 sm+n′

sm+1 sm+n′−1
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46 4. The pumping lemma

Proof. Since L is regular, it is accepted by a deterministic �nite automa-
ton M = (Q,Σ, δ, q0, Qacc). Let n = |Q|. Let u, v, w be words such that
uvw ∈ L and |v| ≥ n. Let |u| = m, |v| = n′ ≥ n, and |w| = `. Since
uvw ∈ L, there is an accepting computation s0, s1, . . . , sm+n′+` of M on
uvw, i.e., s0 = q0, for all 0 ≤ j ≤ m+ n′ + `

sj+1 =


δ(sj , uj+1) if 0 ≤ j < m,

δ(sj , vj+1−m) if m ≤ j < m+ n′,

δ(sj , wj+1−m−n′) if m+ n′ ≤ j < m+ n′ + `,

and sm+n′+` ∈ Qacc. Since sm, . . . , sm+n′ are more than n states, there are
indices m ≤ j1 < j2 ≤ m + n′ such that sj1 = sj2 by the pigeon principle.
Let v = xyz with |x| = j1 −m and |y| = j2 − j1 > 0. Then δ∗(q0, ux) = sj1 ,
δ∗(sj1 , y) = sj2 , and δ

∗(sj2 , zw) ∈ Qacc. Since sj1 = sj2 ,

δ∗(q0, uxy
izw) = δ∗(sj1 , y

izw)

= δ∗(sj1 , y
i−1zw)

...

= δ∗(sj1 , yzw)

= δ∗(sj1 , zw)

∈ Qacc.

Thus uxyizw ∈ L for all i ∈ N.

The statement �for all words u, v, w with uvw ∈ L and |v| ≥ n� in
the pumping lemma can be rephrased as �for every decomposition of a word
s ∈ L into s = uvw with |v| ≥ n�. This might or might not be more intuitive.

4.2 How to apply the pumping lemma

To show that a language L is not regular, one can show that L does not
ful�ll the condition of the pumping lemma since the contraposition of the
statement of the pumping lemma says that if L does not ful�ll the condition
then it is not regular.

Example 4.2 Let us show that A = {0n1n | n ∈ N} is not regular. The
contraposition of the pumping lemma says that if for all n there are words
u, v, w with uvw ∈ A and |v| ≥ n such that for all words x, y, z with xyz = v
and |y| > 0, there is an i ∈ N such that uxyizw /∈ A, then A is not regular.
Let n be given. We set u = ε, v = 0n, and w = 1n. Obviously, uvw ∈ A
and |v| ≥ n. Let v = xyz with |y| > 0. Since v = 0n, x = 0r, y = 0s,
and z = 0t with r + s + t = n and s > 0. We have uxyizw = 0n+(i−1)s1n.
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4.2. How to apply the pumping lemma 47

Except for i = 1, this is not a word in A. (Even setting i = 0, i.e., �pumping
down� gives a contradiction here.) Thus A does not fu�ll the condition of the
pumping lemma and therefore, A is not regular.

We know that a �nite language L is regular. Does not the pumping
lemma imply that L contains an in�nite number of words? The answers is
of course no. The point is that the constant n from the pumping lemma will
be larger than the length of any word in L. The statement in the pumping
lemma is automatically true, since there are no words in L with length at
least n. In particular it follows from (the proof of) the pumping lemma that
every deterministic �nite automaton recognizing a �nite language L has at
least `+ 1 states where ` is the maximum of length of a word in L.

Example 4.3 Closure properties are sometimes useful to simplify proofs of
non-regularity: Consider

B = {x ∈ {0, 1}∗ | the number of 0's equals the number of 1's in x}.

We have A = B∩L(0∗1∗). If B were regular, so would be A, a contradiction.

The pumping lemma game

Proving that a language L is not regular via the pumping lemma can
be considered as a game between you and an adversary, for instance
your professor.

1. Your professor picks an n ∈ N \ {0}.

2. You pick words u, v, w such that uvw ∈ L and |v| ≥ n.

3. Your professor picks words x, y, z such that v = xyz and |y| >
0.

4. You pick an i ∈ N.

Now it comes to the showdown: You win if uxyizw /∈ L. Your
professor wins if uxyizw ∈ L. If you have a winning strategy, i.e., no
matter what your professor picks, you can always make your choices
such that you win, then L is not regular.

(If L is indeed not regular, this is one of the rare chances to win against

your professor.)
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48 4. The pumping lemma

The iron pumping lemma rule

The condition of the pumping lemma is only necessary.

To show that a language L is not regular you can show that it does not

satisfy the condition of the pumping lemma. But you cannot prove that L

is regular by showing that L ful�lls the condition of the pumping lemma.

There are non-regular languages that ful�ll the condition of the pumping

lemma.

The Schöning�Seidel�I don't know who version
of the pumping lemma

In many textbooks or lecture notes of other lecturers you often �nd
the following version of the pumping lemma:

Let L be a regular language. Then there is an n > 0 such that for all
words t with t ∈ L and |t| ≥ n, there are words x, y, z with t = xyz,
|xy| ≤ n, and |y| > 0 such that for all i ∈ N, xyiz ∈ L.
Our version is more general than this version, since we can set u = ε,
v to the pre�x of length n of t, and w to the rest of t.
Our version is much cooler, too. Let L = {0i10n1n | i ≥ 10, n ∈ N}.
In the version above, we cannot rule out that y is a substring of
the �rst 10 zeroes and then pumping does not help. There are
ways to work around this, but why do you want to make your life
unneccesarily complicated. We can just choose u = 0i1, v = 0n, and
w = 1n and are done.

4.3 Exercises

Basic exercises

Exercise 4.1 Show that the following languages are not regular by using the
pumping lemma:

1. A = {0n1m | n > m},

2. B, the set of all palindromes over {0, 1}.
(A word is called a palindrome if x = xrev.)

Exercise 4.2 Show that no in�nite subset of {0n1n | n ∈ N} is regular.

Intermediate exercises

Exercise 4.3 Show that the following languages are not regular by using the
pumping lemma:
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1. A = {0p | p is prime},

2. B = {02i | i ∈ N}.

Exercise 4.4 We proved that REG is closed under (�nite) intersection and
union, that is, if A,B ∈ REG so are A ∩ B and A ∪ B. What about in�nite
intersection and union? More precisely, if A1, A2, · · · ∈ REG, are

⋂∞
i=1Ai

and
⋃∞
i=1Ai regular?

Exercise 4.5 Which of the following languages are regular? Prove your
claims!

1. A = {0n12m | n,m ∈ N},

2. B = {0n1m | n = 3m},

3. C = {0p−1 | p is prime},

4. D = {0n1m | n−m ≤ 9001},

5. E = {0n1m | n ≥ m and m ≤ 420},

6. F = {0n1m | n ≥ m and m ≥ 420},

7. G = L((0∗1)∗0∗).

The language

{0n1m | n 6= m}

is not regular, since we can write

{0n1m | n = m} = ({0, 1}∗ \ {0n1m | n 6= m}) ∩ L(0∗1∗)

and REG is closed under complementation and intersection. Proving this
directly via the pumping lemma turns out to be a little bit tricky.

Exercise 4.6 Prove that L = {0n1m | n 6= m} is not regular using the
pumping lemma directly.

Advanced exercises

The next exercise generalizes the principle from Exercise 4.3.

Exercise 4.7 Recall that a set U ⊆ N is called ultimately periodic if there
are n0 ∈ N and p > 0 such that for all n ≥ n0, n ∈ U i� n + p ∈ U . p is
called the period of U .
Show the following: L ⊆ {0}∗ is regular i� E = {e ∈ N | 0e ∈ L} is ultimately
periodic.
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50 4. The pumping lemma

The pumping lemma proven in the this chapter can only be used to prove
that a language is not regular. We cannot use it to prove that a language
is regular. In the next exercise, we construct an example. In Exercise 5.7,
we prove a generalization of the pumping lemma that is neccessary and
su�cient.

Exercise 4.8 Let A be some language. Let

L := {x ∈ {0, 1}∗ | x ∈ A or x contains 00 or 11 as a subword}

Prove the following:

1. There is an n ∈ N, such that for all u, v, w with uvw ∈ L and |v| ≥ n,
there are words x, y, z with v = xyz and |y| > 0 such that for all i ∈ N,
uxyizw ∈ L.

2. We can choose A in such way that L is not regular.
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B Interlude: More on relations

B.1 Equivalence relations

Another important type of relations are equivalence relations. These are
relations that are re�exive, symmetric and transitive.

Example B.1 E = {(0, 0), (1, 1), (2, 2)} is the equality relation on {0, 1, 2}.

E is an equivalence relation. It is easy to check that it is re�exive and it
is trivially transitive and symmetric since there are no (a, b) ∈ E with a 6= b.
The relation E is the equality relation on the set {0, 1, 2}.

Example B.2 Since {0, 1, 2} ⊆ {0, 1, 2, 3}, we can consider E as a relation
on {0, 1, 2, 3}, too. Now E is not an equivalence relation any more, since
(3, 3) /∈ E, that is, E is not re�exive.

If R is an equivalence relation on a set A, then the equivalence class [a]R
of an element a ∈ A is {b ∈ A | (a, b) ∈ R}. If R is clear from the context,
we will often write [a] for short. Every element in an equivalence class is
called a representative of this class.

Example B.3 1. The relation E has three equivalence classes, namely
{0}, {1}, {2}. Every element forms its own equivalence class.

2. Let m ∈ Z, m > 1. Consider the relation Mm on Z given by

(x, y) ∈Mm :⇐⇒ m|x− y.

This is an equivalence relation: Mm is re�exive, since m|0. It is sym-
metric, since m divides a i� m divides −a. It is transitive, too: If m
divides x−y as well as y−z, then m also divides x−y+y−z = x−z.
There are m equivalence classes, namely,

{x ∈ Z | x ≡ r mod m}, for r = 0, . . . ,m− 1.

Lemma B.4 Let R be an equivalence relation on a set A. Then for all
a, b ∈ A, aRb i� [a]R = [b]R.

Proof. �⇒�: Let x ∈ [a]R, that is, (x, a) ∈ R. Since (a, b) ∈ R, we
have (x, b) ∈ R by transitivity. Therefore, x ∈ [b]R. Since x was arbitrary,
[a]R ⊆ [b]R. [b]R ⊆ [a]R follows in the same way. �⇐�: Since R is re�exive,
b ∈ [b]R. Since [a]R = [b]R, we also have b ∈ [a]R. Thus (b, a) ∈ R (and
(a, b) ∈ R by symmetry).
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Exercise B.1 Prove the following: The equivalence classes of an equivalence
relation R on A form a partition of A, i.e., every a ∈ A belongs to exactly
one equivalence class of R.

The index of an equivalence relation R is the number of equivalence
classes of R and is denoted by index(R). (If the number of equivalence
classes is not �nite, then index(R) is in�nite.)

We call an equivalence relation S on a set A a re�nement of another
equivalence relation R on A, if for every equivalence class C of S, there is
an equivalence class D of R such that C ⊆ D.

Exercise B.2 Let S and R be equivalence relations on some set A with �nite
index. Prove that if S is an re�nement of R and index(S) = index(R), then
S = R.

B.2 Derived equivalence relations

We discuss two ways to create new equivalence relations out of given ones.

Lemma B.5 Let U and V be sets and let R be an equivalence relation on
U and let f be a total function V → U . The relation S on V , de�ned by

S = {(x, y) | (f(x), f(y)) ∈ R}

is an equivalence relation, too.

Proof. S is re�exive: (x, x) ∈ S because (f(x), f(x)) ∈ R by the re�ex-
ivity of R.

S is symmetric: If (x, y) ∈ S, then (f(x), f(y)) ∈ R. By symmetry of R,
(f(y), f(x)) ∈ R. And therefore, (y, x) ∈ S.

S is transitive: If (x, y), (y, z) ∈ S, then (f(x), f(y)), (f(y), f(z)) ∈ R.
By transitivity of R, (f(x), f(z)) ∈ R, and thus, (x, z) ∈ S.

We denote the relation S by f−1(R).

Lemma B.6 Let R1, R2, R3, . . . be equivalence relations on a set U . Then⋂
i∈NRi is an equivalence relation, too.

Proof. Let S :=
⋂
i∈NRi.

S is re�exive: (x, x) ∈ S, since (x, x) ∈ Ri for all i ∈ N by the re�exivity
of Ri.

S is symmetric: If (x, y) ∈ S, then (x, y) ∈ Ri for all i ∈ N. Since each
Ri is symmetric, (y, x) ∈ Ri for all i. Thus, (y, x) ∈ S.

S is transitive: If (x, y), (y, z) ∈ S, then (x, y), (y, z) ∈ Ri for all i ∈ N.
Since each Ri is transitive, (x, z) ∈ Ri for all i. Hence, (x, z) ∈ S.
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Remark B.7 In particular, the intersection of a �nite number of equiva-
lence relations is an equivalence relation, too.

Exercise B.3 Give an example of two equivalence relations such that their
union is not an equivalence relation.

B.3 Exercises

Basic exercises

Exercise B.4 Let f : Z → {0, 1, 2} be the mapping n 7→ n mod 3. Con-
sider the equivalence relation E from Example B.1. Determine the relation
f−1(E).

Exercise B.5 What are the equivalence classes of M2 ∩ M3 (see Exam-
ple B.3)?

Intermediate exercises

Exercise B.6 Let U and V be sets and let R be an equivalence relation on
U and let f be a total function V → U . Prove that the equivalence classes
of f−1(R) are of the form f−1(C) where C is an equivalence class of R.

Exercise B.7 Let R1, R2, R3, . . . be equivalence relations on a set U . Then
the equivalence classes of

⋂
i∈NRi are of the form

⋂
i∈NCi, where Ci is an

equivalence class of Ri for all i.
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5 The Myhill-Nerode theorem

and minimal automata

If a language is regular, then it is recognized by a deterministic �nite au-
tomaton, which has a �nite number of states. Since every subset of N has a
minimum, there is an automaton with a minimum number of states. Is there
a systematic way to �nd this minimum number?

Recall that an equivalence relation is a relation that is re�exive, symmet-
ric, and transitive. We here consider equivalence relations on Σ∗. Let R be
such an equivalence relation. For x ∈ Σ∗, [x]R denotes the equivalence class
of x, i.e., the set of all y ∈ Σ∗ such that xRy. The equivalence classes of R
form a partition of Σ∗, that means, they are pairwise disjoint and their union
is Σ∗. We call a relation right invariant (with respect to concatenation) if
for all x, y ∈ Σ∗,

xRy =⇒ xzRyz for all z ∈ Σ∗.

De�nition 5.1 (Automaton relation) Let M = (Q,Σ, δ, q0, Qacc) be a
deterministic �nite automaton such that δ is total. The relation ≡M is de-
�ned on Σ∗ by

x ≡M y :⇐⇒ δ∗(q0, x) = δ∗(q0, y).

Lemma 5.2 For every deterministic �nite automaton M , ≡M is an equiv-
alence relation that is right invariant and has a �nite index.

Proof. ≡M is an equivalence relation by Lemma B.5, because = on the
set Q is an equivalence relation.

It is right invariant, because δ∗(q0, xz) = δ∗(δ∗(q0, x), z). If x ≡M y, then
δ∗(q0, x) = δ∗(q0, y) and

δ∗(q0, xz) = δ∗(δ∗(q0, x), z) = δ∗(δ∗(q0, y), z) = δ∗(q0, yz)

and therefore, xz ≡M yz.

Finally, the index of ≡M is bounded from above by |Q|, thus it is �nite.

Remark 5.3 If all states of M are reachable from the start state, i.e., for
all q ∈ Q, there is an x ∈ Σ∗ such that δ∗(q0, x) = q, then index(≡M ) = |Q|.
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Let L ⊆ Σ∗, and let M be a deterministic �nite automaton for it. ≡M
de�nes a relation on Σ∗ that of course depends onM . If we take two di�erent
deterministic �nite automata M1 and M2 for L, then the relations might
be di�erent. Next, we de�ne a relation ∼L on Σ∗ that is independent of
the chosen automaton. As we will see, every other relation ≡M will be a
re�nement of it, i.e, every equivalence class of ≡M is contained in a class of
∼L. The relation ∼L is even de�ned for languages that are not regular.

De�nition 5.4 (Myhill-Nerode relation) Let L ⊆ Σ∗. The Myhill-Nerode
relation ∼L is de�ned on Σ∗ by

x ∼L y :⇐⇒ [for all z ∈ Σ∗: xz ∈ L ⇐⇒ yz ∈ L].

Example 5.5 Consider the language L = L(0∗10∗10∗). L is the language
of all words in {0, 1}∗ that contain exactly two 1's. We claim that ∼L has
four equivalence classes:

Ai = {x ∈ {0, 1}∗ | the number of 1's in x equals i} for i = 0, 1, 2

A>2 = {x ∈ {0, 1}∗ | the number of 1's in x is > 2}

If the number of 1's in a word x equals i ≤ 2, then xz ∈ L i� the number of
1's in z equals 2− i. If a word x has more than two 1's, then xz /∈ L for any
z ∈ {0, 1}∗. Thus A0, A1 ,A2, and A>2 are indeed the equivalence classes of
L. 0, 1, 11, and 111 are representatives of these classes.

Lemma 5.6 For every L ⊆ Σ∗, ∼L is an equivalence relation that is right
invariant.

Proof. ∼L is an equivalence relation: For each �xed z ∈ Σ∗, the relation
Rz de�ned by (x, y) ∈ Rz i� xz ∈ L ⇐⇒ yz ∈ L is an equivalence relation
by Lemma B.5. The Myhill-Nerode relation is the intersection of all Rz and
therefore an equivalence relation by Lemma B.6.

To see that it is right invariant, let x ∼L y. We have to show that
xw ∼L yw for all w ∈ Σ∗. xw ∼L yw means that for all z ∈ Σ∗, xwz ∈
L ⇐⇒ ywz ∈ L. But this is clear since x ∼L y means that for all z′ ∈ Σ∗,
xz′ ∈ L ⇐⇒ yz′ ∈ L, in particular for z′ = wz.

5.1 The Myhill-Nerode theorem

Theorem 5.7 (Myhill-Nerode) Let L ⊆ Σ∗. The following three state-
ments are equivalent:

1. L is regular.

2. L is the union of some equivalence classes of a right invariant equiva-
lence relation with �nite index.
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56 5. The Myhill-Nerode theorem and minimal automata

3. ∼L has �nite index.

Proof. �1. =⇒ 2.�: If L is regular, then there is a deterministic �nite
automaton M = (Q,Σ, δ, q0, Qacc) with L(M) = L. The relation ≡M is an
equivalence relation that is right invariant. Its index is ≤ |Q| and hence
�nite. By de�nition,

L = {x ∈ Σ∗ | δ∗(q0, x) ∈ Qacc}

=
⋃

q∈Qacc

{x ∈ Σ∗ | δ∗(q0, x) = q}.

By the de�nition of the automaton relation, each set {x ∈ Σ∗ | δ∗(q0, x) = q}
is an equivalence class of ≡M .
�2. =⇒ 3.�: Let R be a right invariant equivalence relation with �nite index
such that L = [x1]R∪· · ·∪ [xt]R. We show that R is a re�nement of ∼L, that
is, every equivalence class C of R is a subset of some equivalence class C ′ of
∼L. This implies index(∼L) ≤ index(R). Since index(R) is �nite, index(∼L)
is �nite, too.

Let x, y ∈ Σ∗ with xRy. If we can show that x ∼L y, then we are done
since this means that any two elements from an equivalence class of R are
in the same equivalence class of ∼L. Hence every equivalence class of R is
contained in an equivalence class of ∼L. Since R is right invariant,

xzRyz for all z ∈ Σ∗. (5.1)

Since L = [x1]R∪· · ·∪ [xt]R, R-equivalent words are either both in L or both
not in L. Hence (5.1) implies

xz ∈ L ⇐⇒ yz ∈ L for all z ∈ Σ∗.

Thus x ∼L y.
�3. =⇒ 1.�: Given ∼L, we construct a deterministic �nite automaton M =
(Q,Σ, δ, q0, Qacc) with L = L(M). We set

The Myhill-Nerode automaton

� Q = the set of equivalence classes of ∼L,

� δ([x]∼L , σ) = [xσ]∼L for all σ ∈ Σ,

� q0 = [ε]∼L ,

� Qacc = {[x]∼L | x ∈ L}.

δ is de�ned in terms of representatives, thus we have to check that it
is well-de�ned, that means, if x ∼L y, then xσ ∼L yσ. But this follows
immediately from the right invariance of ∼L.
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It remains to verify that L(M) = L. An easy proof by induction shows
that δ∗([ε]∼L , x) = [x]∼L . Thus,

L(M) = {x | δ∗([ε]∼L , x) ∈ Qacc} = {x | [x]∼L ∈ Qacc}.

By de�nition, [x]∼L ∈ Qacc i� x ∈ L. Thus L(M) = L.

The Myhill-Nerode theorem was independently proved by Myhill [Myh57]
and Nerode [Ner58]. Fun fact: The pumping lemma was not proved by
Pumping, but by Bar-Hillel, Perles, and Shamir [BHPS61].

Exercise 5.1 Show that δ∗([ε]∼L , x) = [x]∼L for all x ∈ Σ∗ in the �3. =⇒
1.�-part of the proof of the Myhill�Nerode theorem.

Example 5.8 Let A = {0n1n | n ∈ N}. We have 0i 6∼A 0j for i 6= j, since
0i1i ∈ A but 0j1i /∈ A. Thus [0i]∼A for i ∈ N are pairwise distinct equivalence
classes. Thus the index of ∼A is in�nite and A is not regular.

Myhill-Nerode theorem versus Pumping lemma

Both results are tools to show that a language is not regular.

Pumping lemma: often easy to apply but does not always work

Myhill-Nerode theorem: always works but often it is quite some
work to determine the equivalence classes of ∼L. Keep in mind that
to show that ∼L has in�nite index it is su�cient to �nd an in�nite
number of equivalence classes�we do not have to �nd all of them.

5.2 The minimal automaton

Let M = (Q,Σ, δ, q0, Qacc) and M ′ = (Q′,Σ, δ, q′0, Q
′
acc) be deterministic

�nite automata such that δ and δ′ are total. M and M ′ are isomorphic if
there is a bijection b : Q→ Q′ sucht that

1. for all q ∈ Q and σ ∈ Σ, b(δ(q, σ)) = δ′(b(q), σ),

2. b(q0) = q′0,

3. b(Qacc) = Q′acc.

Such a mapping b is called an isomorphism. The �rst condition says that
the following diagram commutes:

Q× Σ Q

Q′ × Σ Q′

δ

b id b

δ′
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58 5. The Myhill-Nerode theorem and minimal automata

Together with the second and third condition, this means that two isomor-
phic automata are the same up to renaming the states. Being isomorphic
is an equivalence relation. The de�nition of isomorphic seems to be �asym-
metric�, the bijection is from Q to Q′. However, we can take the inverse
map b−1 : Q′ → Q and apply it to the equations in the items 1 to 3 in the
de�nition of isomorphic (and replace q in item 1 by b−1(q′) where q′ = b(q)).
Thus the situation is indeed symmetric.

Theorem 5.9 Let L ⊆ Σ∗ be a regular language.

1. Any deterministic �nite automaton M ′ = (Q′,Σ, δ′, q′0, Q
′
acc) such that

δ′ is a total function and L(M ′) = L has at least index(∼L) states.

2. Every deterministic �nite automaton with total transition function and
index(∼L) many states that recognizes L is isomorpic to the automaton
M = (Q,Σ, δ, q0, Qacc) constructed in the �3. =⇒ 1.�-part of the proof
of the Myhill�Nerode theorem.

Proof. Item 1: When we combine the �1. =⇒ 2.�- and the �2. =⇒ 3.�-
part of the proof of the Myhill-Nerode theorem, we see that the relation ≡M ′
is a re�nement of ∼L. Thus |Q′| ≥ index(≡M ′) ≥ index(∼L).
Item 2: Assume now that |Q′| = |Q|. This means that index(∼L) =
index(≡M ′). Since ≡M ′ is a re�nement of ∼L, the equivalence classes of
both relations are the same and hence both equivalence relations are the
same. In particular, we can just simply write [x] for the equivalence class of
x in any of the two relations. Let

b : Q′ → Q
q′ 7→ [x] where x is chosen such that (δ′)∗(q′0, x) = q′

Since |Q′| = |Q|, every state of M ′ is reachable. Thus b is de�ned for
every q′ ∈ Q′. Second, we have to check that b is well-de�ned: If y ful�lls
(δ′)∗(q′0, y) = q′, too, then x ≡M ′ y and hence x ∼L y. Since ≡M ′ is a
re�nement of ∼L, b is certainly surjective, and because |Q′| = |Q|, it is a
bijection, too.

To show that M ′ is the same automaton as M (up to renaming of the
states), we have to show that

1. δ(q, σ) = b(δ′(b−1(q), σ)) for all q ∈ Q, σ ∈ Σ,

2. b(q′0) = [ε], and

3. b(Q′acc) = Qacc.

For the �rst statement, let q = [x], and let b−1(q) = q′. Then b(δ′(q′, σ)) =
[xσ] by the de�nition of b. The second statement follows from the fact
that (δ′)∗(q′0, ε) = q′0 and the de�nition of b. For the third statement, let
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[0]

0

[1]

0

1
[11]

0

1
[111]

1

0/1

Figure 5.1: The minimal automaton for L(0∗10∗10∗). It has four states that
count the number of 1's.

q′ ∈ Q′acc and let x be such that (δ′)∗(q′0, x) = q′. Then b(q′) = [x]. We
have x ∈ L(M ′) = L and thus [x] ∈ Qacc. This shows b(Q

′
acc) ⊆ Qacc. This

argument can be reversed, and thus we are done.

Example 5.10 We determined the equivalence classes of the Myhill-Nerode
relation of L = L(0∗10∗10∗) in Example 5.5. The corresponding minimal
automaton is shown in Figure 5.1.

5.3 An algorithm for minimizing deterministic �nite

automata

How do we actually �nd the minimal automaton for some language L? Let
M = (Q,Σ, δ, q0, Qacc) be any �nite deterministic automaton with L =
L(M). We can assume that every state is reachable from q0. We know
that ≡M is a re�nement of ∼L. The equivalence classes of ≡M correspond
to the states of M . Thus we have to identify these groups of states that
form one equivalence class of ∼L. Let A and A′ be equivalence classes of
≡M and assume that q and q′ are the corresponding states, i.e., x ∈ A ⇐⇒
δ∗(q0, x) = q and x ∈ A′ ⇐⇒ δ∗(q0, x) = q′. A and A′ are subsets
of the same equivalence class of ∼L i� for all z ∈ Σ∗, δ∗(q, z) ∈ Qacc i�
δ∗(q′, z) ∈ Qacc. A proof or witness that two states are not equivalent is a z
with δ∗(q, z) ∈ Qacc and δ∗(q′, z) /∈ Qacc. If there is such a z, then there is
such a z that is short.

Lemma 5.11 If there is a z with δ∗(q, z) ∈ Qacc and δ∗(q′, z) /∈ Qacc, then
there is a word z′ with |z′| ≤

(|Q|
2

)
such that δ∗(q, z′) ∈ Qacc and δ∗(q′, z′) /∈

Qacc or vice versa.

Proof. Let s0, s1, . . . , st be the computation ofM when it starts in q = s0

and reads z. Let s′0, s
′
1, . . . , s

′
t be the computation of M when it starts in

q′ = s′0 and reads z. If t ≤
(|Q|

2

)
, then we are done. Otherwise, there are

indices i and j, i < j, such that {si, s′i} = {sj , s′j} since
(|Q|

2

)
is the number
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of unordered pairs with elements from Q. If si = sj and s
′
i = s′j , then, as in

the proof of the pumping lemma, we can shorten the two computations by
leaving out the states si+1, . . . , sj and s

′
i+1, . . . , s

′
j . The corresponding word

is z′ = z1 . . . zizj+1 . . . zt. If si = s′j and s
′
i = sj , then s0, . . . , si, s

′
j+1, . . . , s

′
t

and s′0, . . . , s
′
i, sj , . . . , st are the computations of M on z′ when started in

q = s0 and q′ = s′0. But now δ∗(q, z′) /∈ Qacc and δ∗(q′, z′) ∈ Qacc. If z′ is

still longer than
(|Q|

2

)
, we can repeat the process.

To decide whether two states are equivalent, we �just� have to check
whether for all z ∈ Σ∗ with |z| ≤

(|Q|
2

)
, δ∗(q, z) ∈ Qacc i� δ

∗(q′, z) ∈ Qacc. If
q and q′ are equivalent, then we can remove one of them, say q, and all arcs
in the transition diagram that come into q now point to q′ instead (i.e., if
δ(p, σ) = q, then δ(p, σ) = q′ in the new automaton). The new automaton
has one state less, and we can go on until we do not �nd a pair of equivalent
states.

But there is a much faster algorithm. In some sense, words of length
1 are su�cient. The idea is to partition the set of states Q, that is, we
write Q = P1 ∪ · · · ∪Pt such that P1, . . . , Pt are pairwise disjoint. We de�ne
[Pi] =

⋃
q∈Pi{x | δ

∗(q0, x) = q}. For a single state q, we also write [q] instead
of [{q}]. We want to maintain the following invariant:

For every equivalence class C of the Myhill-Nerode relation∼L(M),
there is an i such that C ⊆ [Pi].

This ensures that for p ∈ Pi and q ∈ Pj , i 6= j, [p] and [q] are contained in
di�erent Myhill-Nerode classes. We will start with the partition P1 = Qacc

and P2 = Q \ Qacc. This ful�lls the invariant about, since words in [Qacc]
and [Q \Qacc] cannot be equivalent, as witnessed by ε.

Lemma 5.12 Let P1, . . . , Pt be a partition of the states of M as above. Let
1 ≤ i, j ≤ t, σ ∈ Σ, and q, p ∈ Pi.

1. If δ(p, σ) ∈ Pj but δ(q, σ) /∈ Pj, then [p] and [q] are subsets of di�erent
Myhill-Nerode classes.

2. Conversely, if [p] and [q] are subsets of di�erent Myhill-Nerode classes,
then there is are indices i′ and j′, σ′ ∈ Σ, and p′, q′ ∈ Pi′ such that
δ(p′, σ) ∈ Pj′ and δ(q′, σ) /∈ Pj′.

The �rst statement says that when we separate the states of Pi into
{p ∈ Pi | δ(p, σ) ∈ Pj} and {q ∈ Pi | δ(q, σ) /∈ Pj}, we keep our invariant.
The second statement tells us that whenever our partition is to coarse, that
is, there is an i such that [Pi] contains Myhill-Nerode inequivalent words,
then there is an index i′ such that the separation step as described in 1
works for Pi′ .
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Proof. Let x ∈ [p] and y ∈ [q]. Then xσ ∈ [Pj ] but xσ /∈ [Pj ]. This
means that xσ and yσ are not Myhill-Nerode equivalent. Then x and y are
not Myhill-Nerode equivalent, too, by right-invariance.

For the second statement, since [p] and [q] are subsets of di�erent Myhill-
Nerode classes, there is a string z such that δ∗(p, z) ∈ Qacc and δ∗(q, z) /∈
Qacc. Let z′ be the longest pre�x of z such that p′ := δ∗(p, z′) and q′ :=
δ∗(q, z′) are in the same set from P1, . . . , Pt. z

′ is a proper pre�x of z since
states from Qacc and Q \Qacc cannot occur in the same set by construction.
Let σ′ be the next symbol in z after z′. Then δ(p′, σ′) and δ(q′, σ′) are in
di�erent sets from P1, . . . , Pt by the maximality of z′.

Now the algorithms works as follows: We start with the initial partition
P1 = Qacc and P2 = Q \ Qacc. x ∈ [P1] and y ∈ [P2] cannot be Myhill-
Nerode equivalent (as witnessed by ε). So our invariant is ful�lled initially.
In each step of the algorithm, we choose one of the sets Pj and a σ ∈ Σ.
Let X = {q ∈ Q | δ(q, σ) ∈ Pj}. We replace each other Ph by Ph ∩X and
Ph \X. If one of these two sets is empty, then Ph is not changed. It follows
from the �rst part of Lemma 5.12 that we keep our invariant. If there does
not exists a choice of j and σ such that the current partition changes, then
we have found the Myhill-Nerode classes. This follows from the second part
of the lemma. Below you can �nd an �implementation� of the algorithm in
pseudocode.

Algorithm Hopcroft's minimization algorithm

Input: A deterministic �nite automaton M = (Q,Σ, δ, q0, Qacc)
with total transition function δ

Output: A partition P1, . . . , Pt of Q into equivalent states, that is,
{x | δ∗(q0, x) ∈ Pi} is a Myhill-Nerode class for all 1 ≤ i ≤ t.

1: Start with P1 := Qacc and P2 := Q \Qacc.
2: while there are an i, j and p, q ∈ Pi and σ ∈ Σ such that δ(p, σ) ∈ Pj

and δ(q, σ) /∈ Pj do
3: Choose such a j and σ.
4: Set X := {q ∈ Q | δ(q, σ) ∈ Pj}.
5: Replace every Ph by Ph ∩X and Ph \X.

If one of these sets is empty, then Ph is not changed.
{At least Pi will change by the condition of the loop.}

6: od
7: Return the current partition.

This algorithm can be speed up by carefully choosing the value j. The
resulting algorithm is known as Hopcroft's algorithm [Hop71] and has a
running time of O(|Σ|n log n).
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5.4 Exercises

Basic exercises

Exercise 5.2 Determine the Myhill-Nerode classes of the following languages
and construct the corresponding minimal automaton:

1. A = {x ∈ {0, 1}∗ | x has an even number of 0},

2. B = {x ∈ {0, 1}∗ | x starts with a 0 or ends with a 1}.

Exercise 5.3 For each of the following languages, give an in�nite sequence
of words that are pairwise Myhill-Nerode inequivalent.

1. A = {0n1m | n ≥ m},

2. B = {x ∈ {0, 1}∗ | x = xrev},

3. C = {0n2 | n ∈ N}.

Exercise 5.4 Minimize the following automaton:

S

A B

C

DEF

G

0

1

0

1

0

1

1

0, 1

0, 1

0, 1

0, 1

First check whether the transition function is total.

Intermediate exercises

Exercise 5.5 Let Sn = {x ∈ {0, 1}∗ | the n-last symbol of x is a 1}.

1. Show that index(∼Sn) ≥ 2n. Conclude that the power set construction
that transforms a nondeterministic �nite automaton into a determin-
istic one is essentially optimal.

2. Give a regular expression En for Sn such that |En|, the length of En
considered as a string, is linear.
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By the last exercise, every deterministic �nite automation for the lan-
guage Sn has an exponential number of states. However, we constructed a
nondeterministic one with only n + 1 states in Example 2.9 and a regular
expression for Sn of linear size in the previous exercise.

The next exercise clari�es the relation between nondeterministic �nite
automata and regular expressions.

Exercise 5.6 Analyse the constructions of the previous chapters to show:

1. Let L = L(E) for a regular expression with |E| = n. (Here, |E| is
the length of E as a word.) Then there is a nondeterministic �nite
automation M for L with O(n) many states.

2. Let L = L(M) for a nondeterministic �nite automaton M with n
states. Then there is regular expression E for L of length O(cnn|Σ|) .

Advanced exercises

The next exercise is a generalization of the pumping lemma due to Ja�e
[Jaf78] that is neccessary and su�cient.

Exercise 5.7 A language A ⊆ Σ∗ has property (J), if

there is an n ≥ 0,
such that for all words y ∈ Σ∗ with |y| = n,
there are words u, v, w with |v| > 0 and y = uvw
and for all words z and i ≥ 0: yz ∈ A ⇐⇒ uviwz ∈ A.

1. Prove that if A is regular, then it has property (J).

2. Prove that if A has property (J), then it is regular.

There is another generalization by Stanat and Weiss [SW82].
Here is an alternative, really astonishing algorithm by Brzozowski [Brz63]

for constructing the minimal deterministic automaton.

Exercise 5.8 LetM = (Q,Σ, δ, q0, Qacc) be a �nite deterministic automaton
for some language L and assume that all states of M are reachable from q0.
Let M rev be the automation that is obtained by reversing every edge in M
and exchanging starting and accepting states. This automaton accepts the
language Lrev, see Exercise 2.8. M rev has multiple starting states, in the
construction of Exercise 2.8 we added a new starting state with ε into these
states. We do not do this here, but we keep the multiple starting states. M rev

accepts a string if there is an accepting computation starting in some starting
state. Let N be the power set automaton of M rev, see Theorem 2.8. The
starting state of N will be Qacc, which contains the staring states of M rev.
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The accepting states are those set of states that contain q0. In N we remove
all states that are not reachable from Qacc. Let N = (P,Σ,∆, Qacc, Pacc) be
the resulting automaton.

1. Prove the following: For any states q ∈ Q and Z ∈ R, we have q ∈
∆∗(Z,wrev) i� δ∗(q, w) ∈ Z.

2. Prove that for two states R,R′ of N , if [R]≡N and [R]≡N are con-
tained in the same Myhill-Nerode class, that is, ∆∗(R, x) ∈ Pacc i�
∆∗(R′, x) ∈ Pacc, then R = R′.

3. Conclude that N is the minimal automaton for Lrev.

4. Use this to build an algorithm for computing the minimum determin-
istic �nite automaton

The goal of the next exercise is to prove Theorem 2.12 (right after Exer-
cise 2.11). There you can also �nd the de�nition of ultimately periodic and
regularity preserving.

We consider a binary relation R on N. For a language L ⊆ Σ∗, let

P (R,L) = {x | there is a y ∈ Σ∗ with (|x|, |y|) ∈ R and xy ∈ L}.

We call R regularity preserving if for all regular language L, P (R,L) is
regular, too. R is called u.p. preserving if for any ultimately periodic set A,

R−1(A) = {m | there is an n ∈ A such that (m,n) ∈ R}

is ultimately periodic, too.

Exercise 5.9 1. Prove that if R is regularity preserving, then R is u.p. pre-
serving.

2. Prove that if R is u.p. preserving, then R is regularity preserving.

3. Exercise 2.11 is an immediate consequence of this characterization.
What about other functions? For instance, prove that for every regular
language L, the language

Lexp = {x | there is a y such that |y| = 2|x| and xy ∈ L}

is regular.
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I Twoway �nite automata

I.1 Twoway �nite automata

Would �nite automata be more powerful if they could read the input more
than once? Like an ordinary �nite automaton a deterministic twoway �nite
automaton is described by a tuple M = (Q,Σ,`,a, δ, q0, Qacc) such that

1. Q is a �nite set, the set of states,

2. Σ is a �nite set, the input alphabet,

3. `/∈ Σ is the left end marker,

4. a/∈ Σ is the right end marker,

5. δ : Q× (Σ ∪ {`,a})→ Q× {L,R} is the transition function,

6. q0 ∈ Q is the start state,

7. Qacc ⊆ Q are the accepting states.

The only di�erence is that δ is now a function Q×(Σ∪{`,a})→ Q×{L,R}.
If M is in state q, reads a symbol σ, and δ(q, σ) = (q′, r), then the new state
of M is q′ and M moves its head to the left if r = L and to the right
otherwise. The symbols ` and the a do not belong to the input alphabet;
they mark the beginning and the end of the input word. Given an input w,
we write `wa on the input tape. The automaton starts on ` and depending
on the current state and the symbol it reads, changes its states and moves
its head to the left or right. Whenever the automaton leaves the string `wa,
it stops. It accepts the input w if it leaves the input to the right and is in
an accepting state. We can de�ne nondeterministic twoway �nite automata,
too. Here, δ maps into P(Q× {L,R}).

Example I.1 Figure I.1 shows twoway deterministic automaton for the lan-
guage S3 = {x ∈ {0, 1}∗ | the third to last symbol is a 0}. This automaton
can be extended to an automaton for Sk with k + 2 states. We know that
every oneway deterministic �nite automaton for Sk needs 2k states by the
Myhill-Nerode theorem.
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A

(`, R)

(0, R)

(1, R)

B
(a, L)

C
(0, L)

(1, L)

D
(0, L)

(1, L)

E
(0, R)

(a, R)

(0, R)

(1, R)

Figure I.1: A twoway deterministic �nite automaton for S3. In state A, the
automaton goes to the right until it hits the right end marker a. Then it
goes three steps back and checks whether the third to last symbol is a 0. If
yes, it leaves the input to the right in the accepting state E.

I.1.1 Computations

Computations for �nite automata have been sequences of states so far. Finite
automata also move their input head, but the position of the input head has
been implicitly encoded in the position in a computation.

A con�guration of a twoway �nite automaton on input x = x1 . . . xn is
a tuple from Q × {−1, . . . , n + 2}. (q, i) describes the current state of the
automaton and i the position on the input. i = 0 is the left end marker,
i = n+ 1 is the right end marker. i = −1 means that the automaton left the
input to the left and i = n+ 2 means that the input is left to the right.

We now de�ne a binary relation �x on the set of all con�gurations. Let
`x1 . . . xna =: y0y1 . . . , yn+1. Now, for all p ∈ Q and 0 ≤ i ≤ n+ 1,

δ(p, yi) = (q, L)⇒: (p, i) �x (q, i− 1)

δ(q, yi) = (q,R)⇒: (p, i) �x (q, i+ 1)

The relation �x describes one step of the automaton M . (p, i) �x (q, i − 1)
means that ifM is in state p and reads the symbol yi, then it will enter state
q and move to the symbol yi−1.

If M is nondeterministic, then δ(p, yi) = (q, L) is replaced by (q, L) ∈
δ(p, yi). The same is done for the second line.

If (p, i) �x (q, j), then we call (q, j) the successor con�guration of (p, i).
And (p, i) is called the predecessor of (q, j). The con�guration (q0, 0) is called
the starting con�guration of M . Every con�guration that does not have a
successor is called a halting con�guration. In particular, con�gurations of
the form (p,−1) and (p, n+ 2) do not have any successor, that is, when M
leaves the input, then the computation stops.

A computation of M on x is a sequence of con�gurations C1, . . . , Ct such
that Cτ �x Cτ+1, 1 ≤ τ ≤ t− 1, C1 is the starting con�guration, and Ct is a
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I.1. Twoway �nite automata 67

halting con�guration. In this case, M halts. A computation can also be an
in�nite sequence. In this case, M does not halt.

Now let �∗x be the transitive closure of �x.

De�nition I.2 1. A twoway �nite automaton M accepts a string x, if
(q0, 0) �∗x (q, n+ 2) for some q ∈ Qacc.

2. L(M) = {x ∈ Σ∗ |M accepts x}.

This means that starting in (q0, 0), which is also called the starting con-
�guration, the automaton leaves the input to the right in an accepting state.
The de�nition works for deterministic and nondeterministic twoway �nite
automata, the the �rst case, there is only one possible computation, in the
latter, there may be many. In the latter case, we can arrange the computa-
tions in a computation tree.

If an automaton does not accept a string x, then there are several pos-
sibilities: It stopped in a rejecting state, or it stopped in an accepting state
but did not leave the input to the right, or it is looping in an in�nite loop.

Example I.3 Consider the automaton in Figure I.1. The computation on
the string x = 1010 looks as follows:

(A, 0) �x (A, 1) �x (A, 2) �x (A, 3) �x (A, 4) �x (A, 5)

�x (B, 4) �x (C, 3) �x (D, 2)

�x (E, 3) �x (E, 4) �x (E, 5) �x (E, 6)

We end in an accepting con�guration and leave the input to the right, there-
fore, we accept.

I.1.2 Crossing sequences

Let M be a twoway �nite automaton (deterministic or nondeterministic).
Fix an input x and �x a computation γ of M on x. A crossing sequence of
M on input x at position i is the sequence of the states of M when moving
its head from cell i to i+1 or from cell i+1 to i. We denote this sequence by
CS(x, i, γ). The odd positions in a crossing sequence correspond to moves of
M from cell i to i + 1 (left to right) and the even positions to moves from
cell i+ 1 to i (right to left). (The cell 0 contains the ` symbol, the cell n+ 1
the a-symbol.) If |x| = n, then we have n+ 1 crossing sequences. We do not
count the one step when M leaves the input to the right.

The crossing sequences of two neighbouring positions have to �match�,
i.e., if σ is the symbol in cell i and (q1, . . . , qk) and (p1, . . . , p`) are the
crossing sequences at position i and i+ 1, then for instance, either (p1, R) ∈
δ(q1, σ) or (q2, L) ∈ δ(q1, σ), i.e., either M entered cell i in state q1, read
σ, changed its states to p1 and moved to the right or it changed its state
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68 I. Twoway �nite automata

to q2 and moved to the left. To formalize this, we de�ne two relations, a
left-matching relation ML and a right-matching relation MR. These two
matching relations formalize what we outlined above: The left matching
relation is for pairs of crossing sequences when M enters the cell i the �rst
time by making a step to the left and the right matching relation is for the
case that M enters the cell i the �rst time by a move to the right. In a
computation of M , the former case cannot happen, since M always starts
on the leftmost symbol. We need the left-matching relation for the inductive
de�nition of the right-matching relation and vice versa.

De�nition I.4 Let M = (Q,Σ, δ, q0, Qacc) be a twoway �nite automaton.
We de�ne the relationsML andMR inductively:

1. For all σ ∈ Σ, ((), σ, ()) ∈ ML and ((), σ, ()) ∈ MR. Here () denotes
the empty sequence.

2. If ((q3, . . . , qk), σ, (p1, . . . , p`) ∈MR and (q2, L) ∈ δ(q1, σ),
then ((q1, . . . , qk), σ, (p1, . . . , p`) ∈MR.

3. If ((q2, . . . , qk), σ, (p2, . . . , p`) ∈ML and (p1, R) ∈ δ(q1, σ),
then ((q1, . . . , qk), σ, (p1, . . . , p`) ∈MR.

4. If ((q1, . . . , qk), σ, (p3, . . . , p`) ∈ML and (p2, R) ∈ δ(p1, σ),
then ((q1, . . . , qk), σ, (p1, . . . , p`) ∈ML.

5. If ((q2, . . . , qk), σ, (p2, . . . , p`) ∈MR and (q1, L) ∈ δ(p1, σ),
then ((q1, . . . , qk), σ, (p1, . . . , p`) ∈ML.

By construction of these relations, the claim of the following lemma is
obvious.

Lemma I.5 Let M be a twoway �nite automaton and x be an input.

1. Let γ be an accepting computation on x and S0, . . . , Sn be the crossing
sequences at positions 0 to n. Then (Si, xi+1, Si+1) ∈ MR for all
0 ≤ i < n.

2. If we have crossing sequences S0, . . . , Sn such that (Si, xi+1, Si+1) ∈
MR for all 0 ≤ i < n, then these crossing sequences constitute an
accepting computation of M on x.

I.1.3 Simulation

Theorem I.6 The languages recognized by twoway �nite automata are pre-
cisely the regular languages.
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Proof. LetM = (Q,Σ, δ, q0, Qacc) be a twoway �nite automaton. In prin-
ciple, crossing sequences can be arbitrarily long. But if a crossing sequence
has the same state in two odd or in two even positions, then the automaton
performed a loop. It entered cell i in the same state and from the same
direction. If M is deterministic, then this means that M is in an in�nite
loop. If M is nondeterministic, then M still might leave this loop because it
can have other choices. But in this case, there is a shorter accepting compu-
tation. If M accepts an input x, then there is an accepting computation of
M such that each crossing sequence in this computation has length at most
2|Q|.

Now we de�ne a oneway nondeterministic �nite automatonN = (Q′,Σ, δ′, q′0, Q
′
acc).

that simulates M . The states of N are all crossing sequences of length at
most 2|Q|. The starting state of N is (q0). The accepting states are those
crossing sequences (p1, . . . , p`) of odd length such that p` ∈ Qacc. Finally,

δ′((q1, . . . , qk), σ) = {(p1, . . . , p`) | ((q1, . . . , qk), σ, (p1, . . . , p`) ∈MR}.

By Lemma I.5, M accepts x i� N accepts `xa.
N accepts the language {`xa | x ∈ L(M)}. But it is very easy to get an

automaton out of N that accepts L(M).

I.2 Exercises

Basic exercises

Exercise I.1 Prove that a twoway �nite automaton do not become more
powerful when they have the option to stay on the current symbol, that is, δ
is a function Q× (Σ∪{`,a})→ Q×{L, S,R} (with the obvious semantics).

Exercise I.2 Consider the following twoway �nite automaton:

S

(0, R), (`, R), (a, R)

A
(1, L)

B

(1, L)

(0, R)

What language does it recognize? Can you convert it into a oneway �nite
automaton?

Research questions

We have seen that to simulate a oneway nondeterministic �nite automaton
by a oneway deterministic �nite automaton, we might need exponentially
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70 I. Twoway �nite automata

more states. To my best knowledge, it is still an open question whether
there is an exponential gap when simulating twoway nondeterministic �nite
automata by a twoway deterministic �nite automata, see [HS03] for some
result in this direction.

Second, it is also not know whether there is an exponential gap when
simulating oneway nondeterministic �nite automata by twoway deterministic
automata.
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6 Limits of computations

In the �rst part, we have explored the limits of very simple systems, �nite
automata. Now we want to understand the limits of general computers.
We will see that there are tasks that computers cannot do at all. Not just
because you are missing some particular software or you are using the wrong
operating system; we will reason about problems that a computer cannot
solve no matter what.

One such task is veri�cation: Our input is a computer program P and
an input/output speci�cation S.1 S describes the desired input/output be-
haviour. We shall decide whether the program ful�lls the speci�cation or
not. Can this task be automated? That means, is there a computer pro-
gram V that given P and S returns 1, if P ful�lls the speci�cation and 0
otherwise? V should do this correctly for all possible pairs P and S.

Let us consider a (seemingly) easier task. Given a program P , decide
whether P returns the value 0 on all inputs or not. That means, is there a
program Z that given P as an input returns 1 if P returns the value 0 on all
inputs and returns 0 if there is an input on which P does not return 0. (In
constrast to �nite automata, our programs compute with natural numbers
instead of words over some �nite alphabet. This is only done because it is
more natural here, we will see soon that it does not matter at all.) How
hard is this task? Does such a program Z exist? The following program
indicates that this task is very hard (and one of the goals of the �rst part of
this lecture is to show that it is impossible in this general setting).2

Program 1 expects four natural numbers as inputs that are initially stored
in the variables x0, . . . , x3. We do not specify its semantic formally at this
point, but I am sure that you understand what Program 1 does. This pro-
gram returns 1 on some input if and only if there are natural numbers x0 > 2
and x1, x2, x3 ≥ 1 such that xx0

1 +xx0
2 = xx0

3 . The famous Fermat's last theo-
rem states that such four numbers do not exist. It took almost four hundred
years until a valid proof of this conjecture was given.

Excursus: Fermat's last theorem

Pierre de Fermat (born 1607/08 in Beaumont de Lomagne, died 1665 in Castres,
France) was a French lawyer who pursued mathematics as a �hobby�. Nevertheless,

1This is just at an intuitive level. We will formalize this soon.
2Now it is a legitimate question why we should think about veri�cation at all, when it is

impossible. Well you should think about veri�cation, because it is impossible. This is the
real fun! While veri�cation is impossible in general, it is still possible to solve interesting
special cases or verify one particular program.
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74 6. Limits of computations

Program 1 Fermat

Input: x0, . . . , x3

1: if x0 ≤ 2 then
2: return 0
3: �
4: if x1 = 0 or x2 = 0 or x3 = 0 then
5: return 0
6: �
7: if xx0

1 + xx0
2 = xx0

3 then
8: return 1
9: else
10: return 0
11: �

he is regarded as one of the greatest mathematicians. Fermat's last theorem states
that the Diophantine equation xn + yn = zn does not have any integer solution
for n ≥ 3 and x, y, z > 0. The case n = 1 is of course trivial and for n = 2, the
equation is ful�lled by all Pythagorean triples. Although it was always called Fer-
mat's last theorem, it was an unproven conjecture written by Fermat in the margin
of his copy of the Ancient Greek text Arithmetica by Diophantus. This note was
discovered posthumously. The last part of this note became famous: �[...] cuius
rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet�
(I have discovered a truly marvelous proof of this proposition. This margin is too
narrow to contain it.) Fermat's last theorem was �nally proven in 1995 by Andrew
Wiles with the help of Richard Taylor.

Further reading: Simon Singh, Fermat's last theorem, Fourth Estate Ltd, 1997.

6.1 Exercises

Basic exercises

Exercise 6.1 Goldbach's conjecture states that every even number ≥ 4 is
the sum of two primes. Show that if you were able to write the program Z,
then you could prove or disprove Goldbach's conjecture.
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7 WHILE and FOR programs

We want to prove mathematical statements about programs. Speci�cations
of modern imperative programming languages like C++ or JAVA �ll sev-
eral hundred pages and do not typically specify everything. (You might
remember some painful experiences.) As a �rst step, we will de�ne a simple
programming language called WHILE and specify its semantic completely
in a mathematical model such that we can prove theorems about these pro-
grams. Then we will convince ourselves that C++ or JAVA programs cannot
compute more than WHILE programs.

7.1 Syntax

Let us start with de�ning the syntax of WHILE programs. WHILE programs
are strings over some alphabet. This alphabet contains

variables: x0, x1, x2, . . .

constants: 0, 1, 2, . . .

key words: while, do, od

other symbols: :=, 6=, ; , +, −, [, ]

Note that every variable is a symbol on its own and so is every constant.
Also �:=� is treated as one symbol, we just write it like this in reminiscence of
certain programming languages. (No programming language discrimination
is intended.) Thus the underlying alphabet is in�nite.

De�nition 7.1 WHILE programs are de�ned inductively:

1. A simple statement is of the form

xi := xj + xk or

xi := xj − xk or

xi := c,

where i, j, k ∈ N and c ∈ N.

2. A WHILE program P is either a simple statement or of the form

(a) while xi 6= 0 do P1 od or

(b) [P1; P2]
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76 7. WHILE and FOR programs

for some i ∈ N and WHILE programs P1 and P2.

We call the set of all WHILE programsW. We give this set a little more
structure. The set of all WHILE programs that consist of only one simple
statement is called W0. We inductively de�ne the sets Wn as follows:

Wn =Wn−1 ∪ {P | ∃P1 ∈ Wn−1, xi ∈ X such that P = while xi 6= 0 do P1 od or

∃P1 ∈Wj , P2 ∈Wk with j + k ≤ n− 1 such that P = [P1;P2]}

Exercise 7.1 Show the following: A WHILE program P is in Wn if and
only if it was built by applying a rule from 2. in De�nition 7.1 at most n
times.

Before we explain the semantics of WHILE programs, we �rst de�ne
another simple language, the FOR language. It uses the same elements as
WHILE programs, we only have a di�erent type of loop.

De�nition 7.2 FOR programs are de�ned inductively:

1. A simple statement is of the form

xi := xj + xk or

xi := xj − xk or

xi := c,

where i, j, k ∈ N and c ∈ N.

2. A FOR program P is either a simple statement or it is of the form

(a) for xi do P1 od or

(b) [P1; P2]

for some i ∈ N and FOR programs P1 and P2.

The set of all FOR programs is denoted by F . We de�ne the subset Fn
in the same manner as we did for W. FOR programs di�er from WHILE
programs just by having a di�erent type of loop.

7.2 Semantics

A program P gets a number of inputs α0, . . . , αs−1 ∈ N. The input is stored
in the variables x0, . . . , xs−1. The output of P is the content of x0 after
the execution of the program. Note that in this way, the same WHILE or
FOR program can have di�erent numbers of inputs. Therefore, we have to
specify in advance how many inputs the program is going to expect. This
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will usually be clear from the context in what follows, therefore, we will often
omit this speci�cation.

The set X = {x0, x1, x2, . . . } of possible variables is in�nite, but each
WHILE or FOR program P always uses a �nite number of variables. Let
` = `(P ) denote the largest index of a variable in P . We always assume that
` ≥ s − 1. Intuitively, the behavior of a WHILE program P should only
depend on the program itself and the content of the variables occuring in P .
Therefore, we could model a memory state of P as a vector S ∈ N`+1. Si
would simply be the content of the variable xi. (Some of the variables xj
with j ≤ ` might not appear in P . But we do not care, in this case, Sj will
remain unchanged during the whole execution of P .) While this looks �ne,
there is one small annoying inaccuracy. If P = [P1;P2] and P1 uses variables
x0, x3, and x7 and P2 uses x1, x2, and x9, then a state of P1 is a vector of
length 8 but states of P2 and P have length 10. So a state of P1 is formally
not a state of P .

The �right� mathematical object to model the states of a WHILE program
are sequences of natural numbers with �nite support, i.e., functions S : N→
N such that there is an `0 ∈ N such that S(n) = 0 for all n ≥ `0. Therefore,
a state of a WHILE or FOR program is a function S : N → N with �nite
support. Since only the values of S up to `0 are interesting, we will often just
write down the values up to `0 and might even treat S as a �nite vector in
N`0+1. The start state of a WHILE program P with s inputs on α0, . . . , αs−1

is the function (α0, . . . , αs−1, 0, 0, . . . ), which has �nite support. (We can
denote functions N → N by in�nite vectors, which are simply the tables of
values.)

Given a state S and a program P ∈ Wn, we will now describe what
happens when running P starting in S. This is done inductively, i.e., we
assume that we already know how programs behave that are �smaller� than
P where �smaller� means that they are built by less applications of the
second rule in De�nition 7.1 (or De�nition 7.2), i.e., these programs are in
Wn−1. We now de�ne a partial function Φ that de�nes the semantics of
WHILE/FOR programs. It is a functions that maps states as de�ned above
again to states. ΦP (S) will denote the state that is reached after running P
on state S. ΦP will be a partial function, i.e., ΦP (S) might be unde�ned (in
the case when P does not halt on S). WHILE programs may not halt; at an
intuitive level�we did not de�ne the semantics so far�

1: x1 := 1;
2: while x1 6= 0 do
3: x1 := 1
4: od

is such a program.1 The while loop never terminates and there is no state

1The assignment within the loop is necessary because the empty program is no valid
WHILE program. There is no particular reason for this, we just de�ned it like this.
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that can be reached since there is no �after the execution of the program�.

1. If P is a simple statement then

ΦP (S) =


(σ0, . . . , σi−1, σj + σk, σi+1, . . . ) if P is xi := xj + xk

(σ0, . . . , σi−1,max{σj − σk, 0}, σi+1, . . . ) if P is xi := xj − xk
(σ0, . . . , σi−1, c, σi+1, . . . ) if P is xi := c

2. (a) Assume P equals while xi 6= 0 do P1 od. Let r be the smallest

r ∈ N such that Φ
(r)
P1

(S) is either unde�ned, which means that P1

does not terminate, or the ith position in Φ
(r)
P1

(S) equals 0.2 Then

ΦP (S) =

{
Φ

(r)
P1

(S) if r exists and Φ
(r)
P1

(S) is de�ned

unde�ned otherwise

(b) If P is [P1;P2] for WHILE programs P1 and P2, then

ΦP (S) =

{
ΦP2(ΦP1(S)) if ΦP1(S) and ΦP2(ΦP1(S)) are both de�ned

unde�ned otherwise

Lemma 7.3 For every program P , ΦP is well-de�ned.3

Proof overview: The proof will be done by structural induction. Structural
induction means that we assume that the statement is true for �simpler�
programs and we show that the statement is valid for P , too. If P ∈ Wn,
then simpler will mean that the programs are inWn−1. In this way, structural
induction becomes ordinary induction, since we now can just do induction
on n.

Proof. Induction base: If P ∈ W0, then ΦP (S) is de�ned for every S
and it is only de�ned once; thus it is well-de�ned. This shows the induction
basis.
Induction step: Let P ∈ Wn \ Wn−1 for n > 0. We assume that ΦQ is well-
de�ned for all programs Q ∈ Wn−1. Since n > 0, P is either while xi 6= 0
do P1 od or [P1;P2] for P1, P2 ∈ Wn−1 and this decomposition is unique.
By the induction hypothesis, ΦP1 and ΦP2 are well-de�ned. In both cases,
the rules 2.(a) or 2.(b) explicitly de�ne ΦP and thus ΦP is wellde�ned.

2Here f (r) denotes the r-fold composition of functions, that is, f (0)(x) = x and
f (r)(x) = f(f (r−1)(x)) for all x.

3What does well-de�ned mean? Since we did an inductive de�nition, we have to ensure
that (1) each ΦP (S) is de�ned or we explicitly say that the function value is unde�ned
(since unde�ned means that P on S runs forever) and (2) we do not assign ΦP (S) di�erent
values at di�erent places.
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The semantics of the simple statements is as we expect it: xi = xj + xk
takes the values of xj and xk, adds them and stores the result in xi. In case of
subtraction, if the result is negative, we will set it to 0 instead, since we can
only store values from N. This operation is also called modi�ed di�erence.

The syntax of a while loop is again as expected: We execute P1 as long
as the value of xi does not equal 0. If the loop does not terminate, the result
is unde�ned.

If P is the concatenation of P1 and P2, we �rst execute P1 on S and then
P2 on the state produced by P1 provided that P1 halted.

In JAVA or other program languages, we do not have to put brackets
around concatenations. We will now prove that we can use the same conven-
tion for WHILE programs, namely we show that concatenation is associative
with respect to the function Φ:

Lemma 7.4 For any three WHILE programs P1, P2, and P3,

Φ[P1;[P2;P3]] = Φ[[P1;P2];P3].

Proof. By applying rule 2.(a), we have

Φ[P1;[P2;P3]](S) =

{
Φ[P2;P3](ΦP1(S)) if ΦP1(S) and Φ[P2;P3](ΦP1(S)) are both de�ned,

unde�ned otherwise,

and

Φ[P2;P3](T ) =

{
ΦP3(ΦP2(T )) if ΦP2(T ) and ΦP3(ΦP2(T )) are both de�ned,

unde�ned otherwise.

By setting T = ΦP1(S), if it is de�ned, we get that

Φ[P1;[P2;P3]](S) =

{
ΦP3(ΦP2(ΦP1(S)) if ΦP1(S), ΦP2(ΦP1(S)) and ΦP3(ΦP2(ΦP1(S))) are de�ned,

unde�ned otherwise.

In the same way, we get that

Φ[[P1;P2];P3](S) =

{
ΦP3(Φ[P1;P2](S)) if Φ[P1;P2](S) and ΦP3(Φ[P1;P2](S)) are both de�ned,

unde�ned otherwise,

and

Φ[P1;P2](S) =

{
ΦP2(ΦP1(S)) if ΦP1(S) and ΦP2(ΦP1(S)) are both de�ned,

unde�ned otherwise.

Thus, by plugging the second equation into the �rst,

Φ[[P1;P2];P3](S) =

{
ΦP3(ΦP2(ΦP1(S)) if ΦP1(S), ΦP2(ΦP1(S)) and ΦP3(ΦP2(ΦP1(S))) are de�ned,

unde�ned otherwise,
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which �nishes the proof.

Now we can simply write P1;P2;P3 instead of [[P1;P2];P3] or [P1; [P2;P3]].
However, note that once we write P1;P2;P3, we do not know any more which
of the two programs was the original one. As long as we are only interested in
semantics, that does not matter. However, syntactically, these two programs
are di�erent (they are not the same string!) and therefore, a syntactically
correct WHILE program needs all the brackets [. . . ]. We consider dropping
these brackets as syntactic sugar.

The semantics of FOR programs is de�ned in the same manner as for
WHILE programs. The semantics of the simple statements stays the same,
we only have to modify the interpretation of for loops.

2. (a) Assume P equals for xi do P1 od for some FOR program P1.
Then

ΦP (S) = Φ
(σi)
P1

(S).

(b) If P is [P1;P2] for FOR programs P1 and P2, then

ΦP (S) = ΦP2(ΦP1(S)).

A for loop executes P1 σi times, where σi is the value of xi before the
execution of the for loop. This means that changing the value of xi during
the execution of the for loop does not have any e�ect.4 In particular, for
loops always terminate.

This means that we can simplify the interpretation of the concatenation
of FOR programs since we do not have to deal with unde�ned values of Φ.
This makes is even easier to show that concatenation of FOR programs is
associative with respect to Φ (c.f. Lemma 7.4).

Exercise 7.2 Show that every FOR loop can be simulated by a WHILE loop.
(Simulation here means that for every FOR program P of the form for xi
do P1 od we can �nd a WHILE program Q such that ΦP = ΦQ, i.e., both
programs compute the same function.)

7.3 Computable functions and sets

De�nition 7.5 Let P be a WHILE or FOR program with s inputs. The
function ϕsP : Ns → N computed by P is de�ned by

ϕsP (α1, . . . , αs) =


�rst entry of ΦP ((α1, . . . , αs, 0, . . . ))

if ΦP ((α1, . . . , αs, 0, . . . )) is de�ned

unde�ned otherwise

for all (α1, . . . , αs) ∈ Ns.
4For loops in C++, for instance, work di�erently; they are merely while loops.
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If s is clear from the context, we will often simply write ϕP .

De�nition 7.6 1. A partial function f : Ns → N is WHILE computable
if there is a WHILE program P such that f = ϕP .

2. f is FOR computable if there is a FOR program P such that f = ϕP .

3. The class of all WHILE computable functions is denoted by R.

4. The class of all FOR computable functions is denoted by PR.

The acronyms R and PR stand for recursive and primitive recursive.
These are the �rst names that were used for these two classes of functions
and we also use them throughout the following.

By Exercise 7.2, PR ⊆ R. Since for loops always terminate, all functions
in PR are total. On the other hand, there are functions that are not total but
WHILE computable. For instance, we already saw a program that computes
the function N → N that is de�ned nowhere. There are also total functions
in R \ PR. We will show their existence later.

Most of the time, we will talk about subsets L ⊆ N. We also call such
sets languages, in analogy to the �rst part on automata. For any such L, we
de�ne its characteristic function to be the following function:

χL : N→ {0, 1}

x 7→

{
1 if x ∈ L,
0 otherwise.

Since {0, 1} is a subset of N, we can view χL as a function N→ N.

De�nition 7.7 1. A language L ⊆ N is called recursive or decidable if
χL ∈ R.

2. The set of all recursive languages is denoted by REC.

7.4 Exercises

Basic exercises

Exercise 7.3 Show that for each FOR program P , ΦP is a total function.

Hint: Use structural induction. The proof is close to trivial but/and a good
exercise in structural induction.

Exercise 7.4 1. Prove that the WHILE computable functions are closed
under composition. More speci�cally, prove that when f : Ns → N and
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g1, . . . , gs : Nt → N are WHILE computable, so is the function F given
by

Nt → N
(x1, . . . , xt) 7→ f(g1(x1, . . . , xt), . . . , gs(x1, . . . , xt)).

If one of the gi(x1, . . . , xt) is unde�ned, then F (x1, . . . , xt) will be un-
de�ned, too.

2. Conclude that WHILE computable functions N → N are closed under
(ordinary) composition, addition and multiplication. (For multiplica-
tion you might want to read Chapter 8.4 �rst.)

Remark 7.8 The same closure properties hold for FOR computable func-
tions by the very same proof.

Intermediate exercises

Exercise 7.5 Let P and P ′ be WHILE programs such that ΦP = ΦP ′ . Prove
that

1. ΦP ;Q = ΦP ′;Q and ΦQ;P = ΦQ;P ′ for all WHILE programs Q and

2. Φwhile xi 6= 0 do P od = Φwhile xi 6= 0 do P ′ od.

Exercise 7.6 Prove that REC is closed under union, intersection and com-
plementation.

We can restrict the set of simple statements even further. This will be
useful in some proofs.

Exercise 7.7 Prove that in WHILE or FOR programs, we can replace the
simple statements by the statements xi++, xi−−, and xi := 0. Here the
statement xi++ increases the value of xi by 1 and xi−− decreases it by
1, unless the value of xi is 0, then it is unchanged. (Formally, we now
have to de�ne the semantics of these modi�ed programming languages by
de�ning new functions Φ and ϕ. Then we have to prove that whenever a
function is WHILE or FOR computable in the sense of De�niton 7.6, then it
is computable by a WHILE or FOR program with the restricted set of simple
statements.)

Advanced exercises

The next exercise is a follow-up exercise to Exercise 7.7.
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Exercise 7.8 1. Prove that in the restricted FOR programs of Exercise 7.7,
we can even drop the xi−− statements, that is, every FOR computable
function can be computed by for loops and simple statements of the
form xi++ and xi := 0.

2. Prove that there is a WHILE computable function that is not com-
putable by while loops and simple statements of the form xi++ and
xi := 0. (Why can't you simply simulate for loops by while loops and
use the �rst part?)
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The languages WHILE and FOR consist of �ve constructs. We now want to
convince ourselves that we are still able to compute every function Ns → N
that JAVA or C++ could compute. (And no, we are not able to display
fancy graphics.)

8.1 Variable names

WHILE and FOR o�ers only boring variable names like x17. But of course
we can replace them by more fancy ones. We can always revert to ordinary
WHILE/FOR programs by replacing the new fancy name by some xi that
has not been used so far.

8.2 Assignments

WHILE does not contain assignments of the form xi := xj . But this can be
easily simulated by

1: xk := 0;
2: xi := xj + xk

where xk is a new variable. (Since xk is a new variable, it is initialized with
0. Therefore, we could even omit the �rst line.)

Remark 8.1 Formally, we also have to prove the correctness of our sim-
ulation above. So for any state S = (σ0, σ1, . . . ) we have to prove that if
ΦP (S) = (σ′0, σ

′
1, . . . ), then σ′i = σj and all other entries do not change

except for k, where P is the program above. This is quite easy here. We have

Φxk:=0((. . . , σi, . . . , σj . . . , σk, . . . )) = (. . . , σi, . . . , σj . . . , 0, . . . ) and

Φxi:=xj+xk((. . . , σi, . . . , σj . . . , 0, . . . )) = (. . . , σj , . . . , σj . . . , 0, . . . ),

where we have only shown the three relevant positions of the state and as-
sumed i ≤ j < k for simplicity.

Even more formally, you would even have to prove that when you have
any WHILE program Q with assignments and you replace these assignments
with the construction above yielding an ordinary WHILE program Q′, then
ΦQ = ΦQ′, where we de�ne ΦQ in the natural way. (Q is not a proper
WHILE program!) Although the formal proof is a little tedious, it should be
clear that this is doable. Exercise 7.4 is quite helpful.
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8.3 Procedures and functions

Let h be a WHILE or FOR computable function Nt → N, respectively, and
let P be a WHILE or FOR program for h. We can enrich WHILE or FOR
by statements of the form xi = h(xj1 , . . . , xjt) and can always revert back to
ordinary WHILE or FOR as shown in Program 2.

Program 2 Simulation of a function call

1: x`+1 := xj1 ;

2:
...

3: x`+t := xjt ;
4: x`+t+1 := 0;

5:
...

6: x`+m+1 := 0;
7: P̂ ;
8: xi := x`+1

In Program 2, ` is the largest index of a variable used in the current
program and m is the largest index of a variable in P . P̂ is the program
obtained from P by replacing every variable xi by xi+`+1. Basically, we
replace every occurence of h by a program that computes h and avoid any
interferences by choosing new variables. This does not give a very short
program but we do not care. (Note that this does not allow recursive function
calls yet. We need to implement stacks to do this.)

Exercise 8.1 The evaluation strategy above is call by value. How do you
implement call by reference?

8.4 Arithmetic operations

WHILE and FOR only o�ers addition and (modi�ed) subtraction as arith-
metic operations. But this is enough to do everything else. As an example,
let us implement the multiplication xi := xj · xk:
1: xi := 0;
2: for xj do
3: xi := xi + xk
4: od

The implementation above assumes i 6= j, k. Since a FOR loop can be
simulated by a WHILE loop, we can perform multiplications in WHILE, too.

Remark 8.2 To formally prove the correctness of the construction above,
we can show that for any state S = (σ0, σ1, . . . ) after executing the body of
the for loop for the mth time, the ith component of the new state has value
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m · σk and all other entries are left unchanged. This can be easily done by
induction.

Exercise 8.2 Formalize the proof outlined in the remark above.

Exercise 8.3 Show that integer division does not increase the power of FOR
programs, i.e., we can simulate computing the quotient xi := xj/xk and the
remainder xi := xj rem xk in ordinary FOR.

8.5 Stacks

Built-in types like int in C++ or JAVA can only store a limited amount of
information. But we can get as many variables of this type as we want by
using dynamic arrays (or memalloc, if you prefer that). WHILE programs
only have a �nite number of variables but each of them can store an arbi-
trarily large amount of information. In this way, we can simulate arrays.
But before implementing arrays, we will implement stacks �rst.

Since built-in types like int only store a �nite number of information,
you will never be able to store the content of two int-variables in one int-
variables. But in�nite sets like natural numbers behave di�erently. We start
with explaining how to �store� two natural numbers in one.

Lemma 8.3 There are FOR computable functions 〈., .〉 : N2 → N and πi :
N→ N, i = 1, 2, such that

πi(〈x1, x2〉) = xi

for all x1, x2 ∈ N and i = 1, 2.

Proof. We de�ne 〈x1, x2〉 = 1
2(x1 +x2)(x1 +x2 +1)+x2. Note that either

x1 + x2 or x1 + x2 + 1 is even, therefore, 〈x1, x2〉 is a natural number. 〈., .〉
is obviously FOR computable by the results in Section 8.4 and Exercise 8.3.

Let p = 〈x1, x2〉 be given. We want to reconstruct x1 and x2 from p. We
have

1

2
(z + 1)(z + 2)− 1

2
z(z + 1) = z + 1.

Therefore, the largest z such that 1
2z(z+1) ≤ p is x1 +x2, since x2 ≤ x1 +x2.

From this sum z = x1 + x2, we can reconstruct x2 as p− 1
2z(z + 1). Finally,

from the z and x2 we can reconstruct x1 as z − x2. In Exercise 8.4, we
construct FOR programs for π1 and π2.

Exercise 8.4 Construct FOR programs for the projections πi, i = 1, 2.

Remark 8.4 〈., .〉 is also surjective.
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While you can forget about the rest of the construction of stacks and
arrays once you believe that we can simulate them, this pairing functions is
essential for later chapters and you should not forget about its properties.

Excursus: Gauÿ's formula for consecutive integer sums

Carl Friedrich Gauÿ (1777�1855) was a German mathematician, astronomer, and
geodesist. If he had lived today, he would also have been a computer scientist for
sure.

One hears the following anecdote quite often:1 At the age of seven, Gauÿ
attended the Volksschule. To have some spare time, the teacher Büttner told the
pupils to sum up the numbers from 1 to 100. Gauÿ quickly got the answer 5050 by
recognizing that 1 + 100 = 101, 2 + 99 = 101, . . . 50 + 51 = 101, in other words,∑100
i=1 i = 1

2 · 100 · 101. Poor Büttner.

Gauÿ was also one of the main reasons against introducing the Euro.

A stack is a data structure that stores some objects, here our objects
will be natural numbers. We can either push a number onto the stack. This
operation stores the number in the stack. Or we can pop an element from
the stack. This removes the element from the stack that was the last to
be pushed onto the stack among all elements still in the stack. If the stack
is empty and we want to pop an element from the stack, then the stack
remains unchanged. So it works like a stack of plates where you can only
either remove the top plate or put another plate on the top.2 To access the
stack, there is an operation top, which returns the element on top of the stack
without changing it. If the stack is empty, then top can return any value.
There is usually also a function isempty that allows you to check whether a
stack is empty or not.

We represent a stack by S = 〈n, Y 〉. (We are already using the convention
from Section 8.1.) n is the number of elements in S and Y is the content of S.
The empty stack is represents by 〈0, 0〉. If a1, . . . , an are stored in S, with an
being the element pushed onto S last, then Y = 〈an, 〈an−1, . . . 〈a1, 0〉 . . .〉〉.

The push operation is implemented in Programm 3: In the �rst line we
extract the current content of S by projecting onto the second component
and then we push x onto the stack by using the pairing function. Then we
increase the counter in line 2 and pair it with the new content.

Program 3 push(S, x)

1: Y := 〈x, π2(S)〉;
2: S := 〈π1(S) + 1, Y 〉

1In this lecture notes, you occasionally �nd anecdotes about mathematicians and com-
puter scientists. I cannot guarantee that they are true but they are entertaining. This
particular one can be found on Wikipedia, which indicates that it is false.

2Dexterous people might do di�erent things but computer scientist usually do not.
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The pop operation is implemented in a similar fashion. First we extract
the number of elements. If this number is nonzero, then we subtract 1 from
it and remove the top element from the stack by using the projection π2.
Note that we used further syntactic sugar, namely, an if-then-statement, see
Exercise 8.5 at the end of this chapter how to implement this.

Program 4 pop(S)

1: n := π1(S);
2: if n 6= 0 then
3: S := 〈n− 1, π2(π2(S))〉
4: �

Next we show how to implement an operation of the form x = top(S).
This can simply be done by using our projection functions.

Program 5 x = top(S)

1: x := π1(π2(S))

Finally, isempty can be realized in Programm 6

Program 6 b = isempty(S)

1: n := π1(S);
2: if n > 0 then
3: b := 0
4: else
5: b := 1
6: �

8.6 Arrays

Next, we implement arrays. We assume that an array A stores m elements
A[0], . . . , A[m − 1]. We will use a stack to store the array, A[0] will be the
top element. For simplicity, we call the stack A again. In the beginning, A
will contain only zeroes. Therefore, we can initialize A with 0.

To access A[i], we simply pop i elements from the stack and then we
return the top element. Of course, we should only do this with a copy of A,
because the pop operation destroys parts of the stack. We loose the direct
access property of an array, but we only need to show that we can simulate
the functionality in principle, not e�ciently.

We do not check whether i is in the range 0, . . . ,m − 1 to keep the
program simpler. In fact, we will even simulate dynamic arrays, that is, we
can change the size of the array during runtime. It is easily checked that
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〈0, 〈0, . . . 〈0, 0〉 . . .〉〉 = 0. Therefore, we can interpret the initial value 0 as
an in�nite sequence of 0. So the dynamic part comes essentially for free.

Program 7 Extracting the ith element from A

Output: A[i] is returned in x
1: B := A;
2: for i do
3: pop(B)
4: od;
5: x := top(B)

Next, we implement the operation A[i] := b. The implementation is very
similar to the previous program, instead of returning the top element in line
5, we replaced it by b. Furthermore, we have to restore the stack in the end,
therefore, we use a second stack to store the elements that were popped from
A before.

Program 8 Simulating A[i] := b

1: B = 0;
2: for i do
3: push(B, top(A));
4: pop(A)
5: od;
6: pop(A);
7: push(A, b);
8: for i do
9: push(A, top(B));
10: pop(B)
11: od;

8.7 Exercises

Basic exercises

Exercise 8.5 Show how to simulate the if-then-else statement in FOR.

Exercise 8.6 The following construct is also useful. Explain how to simu-
late them in simple WHILE.

� Input: v1, . . . , vs declares v1, . . . , vs as the input variables.
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Intermediate exercises

Exercise 8.7 Explain how to simulate the following statement in simple
WHILE:

� return x leaves the current program immediately and the value of x is
the output of the program.

Here is another function that we could use as a pairing function. It is
injective but not surjective.

Exercise 8.8 Let k be some constant. Let p1, . . . , pk be di�erent prime num-
bers.

1. Show that the mapping g given by

Nk → N
(x1, . . . , xk) 7→ px1

1 · p
x2
2 · · · p

xk
k

is an injective mapping.

2. Show that g is FOR computable.

3. Show that there is a FOR program that decides whether a given y ∈ N
is in im g.

4. Show that there is a FOR program that given y ∈ im g computes the
unique x1, . . . , xk such that g(x1, . . . , xk) = y.
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II Ackermann function

Chapters that are numbered with Roman numbers instead of Arabic ones are
for your personal entertainment only. They are not an o�cial part of the
lecture, in particular, not relevant for any exams. But reading them does not
hurt either . . .

It is clear that there are functions that are WHILE computable but not
FOR computable, since FOR programs can only compute total functions but
WHILE programs can compute partial ones. Are there total functions that
are WHILE computable but not FOR computable? I.e. are WHILE loops
more powerful than FOR loops? The answer is a�rmative.

II.1 De�nition

The Ackermann function is a WHILE computable but not FOR computable
total function, which was �rst published in 1928 by Wilhelm Ackermann, a
student of David Hilbert. The so called Ackermann-Péter-Function, which
was de�ned later (1955) by Rózsa Péter and Raphael Robinson has only two
variables (instead of three).

The Ackermann function is maybe the simplest example of a total func-
tion that is WHILE computable but not FOR computable, providing a coun-
terexample to the belief in the early 1900s that every WHILE computable
function was also FOR computable. (At that time, the two concepts were
called recursive and primitive recursive.) It grows faster than an exponential
function, or even a multiple exponential function. In fact, it grows faster
than most people (including me) can even imagine.

The Ackermann function is de�ned recursively for non-negative integers
x, y by

a(0, y) = y + 1
a(x, 0) = a(x− 1, 1) for x > 0
a(x, y) = a(x− 1, a(x, y − 1)) for x, y > 0

Lemma II.1 a is a total function, i.e, a(x, y) is de�ned for all x, y ∈ N.

Proof. We prove by induction on x that a(x, y) is de�ned for all x, y ∈ N.
Induction base: Starting with the induction base x = 0 gives us a(0, y) = y+1
for all y.
Induction step: The induction step x− 1→ x again is a proof by induction,
now on y. We start with y = 0. By de�nition, a(x, 0) = a(x − 1, 1).
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The right-hand side is de�ned by the induction hypothesis for x − 1. For
the induction step y − 1 → y note that a(x, y) = a(x − 1, a(x, y − 1)) by
de�nition. The right-hand side is de�ned by the induction hypotheses for
x− 1 and also y − 1.

Lemma II.2 a is WHILE computable.

Proof. We prove this by constructing a WHILE program that given x
and y, computes a(x, y). We use a stack S for the computation. Program 9
will compute the value of a with the top two elements of the stack as the
arguments. It �rst pushes the two inputs x and y on the stack. Then it
uses the recursive rules of a to compute the value of a. This might push
new elements on the stack, but since a is total, the stack will eventually
be consisting of a sole element, the requested value. The function size(S)
returns the number of elements in the stack, it is implemented by π1(S).

II.2 Some closed formulas

In this section, we keep x �xed and consider a as a function in y. For small
x, we can express a(x, .) in closed form. For x = 1, we get by applying the
appropriate rules for a:

a(1, y) = a(0, a(1, y − 1))

= a(1, y − 1) + 1

= a(0, a(1, y − 2)) + 1

= a(1, y − 2) + 2

...

= a(1, 0) + y

= a(0, 1) + y

= y + 2.

For x = 2, we have

a(2, y) = a(1, a(2, y − 1))

= a(2, y − 1) + 2

...

= a(2, 0) + 2y

= a(1, 1) + 2y

= 2y + 3.

© Markus Bläser 2007�2021



II.3. Some useful facts 93

Here we used the closed formula a(1, y) = y + 2.
Finally, for x = 3, we obtain

a(3, y) = a(2, a(3, y − 1))

= 2 · a(3, y − 1) + 3

= 2 · a(2, a(3, y − 2)) + 3

= 2 · (2 · a(3, y − 2) + 3) + 3

= 22 · a(3, y − 2) + 3 · (1 + 2)

= 22 · (2 · a(3, y − 3) + 3) + 3 · (1 + 2)

= 23 · a(3, y − 3) + 3 · (1 + 2 + 22)

...

= 2y · a(3, 0) + 3 ·
y−1∑
k=0

2i

= 2y · a(3, 0) + 3 · (2y − 1)

= 2y · a(2, 1) + 3 · 2y − 3

= 2y · 5 + 3 · 2y − 3

= 2y+3 − 3.

So a(1, y) is addition of 2, a(2, y) is (essentially) multiplication with 2,
and a(3, y) is (essentially) exponentiation with base 2.

Exercise II.1 Show that a(4, y) = 22.
. .

2︸ ︷︷ ︸
y+3

−3.

II.3 Some useful facts

In this section, we show some monotonicity properties of a.

Lemma II.3 The function value is strictly greater then its second argument,
i.e., ∀x, y ∈ N

y < a(x, y).

Proof. Again, we show this by induction on x.
Induction base: For x = 0, we just use the de�nition of a which yields

a(0, y) = y + 1 > y.

Induction step: The induction step x − 1 → x is again shown by an inner
induction on y. So we start with y = 0:

a(x, 0) = a(x− 1, 1) > 1 > 0,
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where the �rst inequality follows from the induction hypothesis for x. The
induction step for the inner induction is shown as follows:

a(x, y) = a(x− 1, a(x, y − 1)) > a(x, y − 1) > y − 1. (II.1)

a(x−1, a(x, y−1)) is strictly greater than a(x, y−1) because of the induction
hypothesis for x. But this is even strictly greater than y − 1 because of the
induction hypothesis for y.

We need to prove that a(x, y) > y. But in (II.1), there stands a �>�
twice. Thus (II.1) even implies a(x, y) > y.

Lemma II.4 The Ackermann function is strictly monotonically increasing
in the second argument, i.e., ∀x, y ∈ N

a(x, y) < a(x, y + 1).

Proof. We consider two cases. For x = 0 we have a(0, y) = y + 1 which
is less than y + 2 = a(0, y + 1). So we get a(0, y) < a(0, y + 1).

For x > 0 we see from Lemma II.3 that a(x, y) < a(x− 1, a(x, y)) which
equals a(x, y + 1) by the de�nition of the Ackermann function.

Lemma II.5 For all x, y ∈ N, a(x, y + 1) ≤ a(x+ 1, y).

Proof. By induction on y.

Induction base: For y = 0 the equation a(x, 1) = a(x+ 1, 0) follows from the
de�nition of a.

Induction step: Consider the induction step y − 1 → y. By Lemma II.3,
we know that y < a(x, y). Thus y + 1 ≤ a(x, y) ≤ a(x + 1, y − 1) because
of the induction hypothesis. Lemma II.4 allows us to plug the inequality
y + 1 ≤ a(x+ 1, y − 1) into the second argument yielding

a(x, y + 1) ≤ a(x, a(x+ 1, y − 1)) = a(x+ 1, y).

Lemma II.6 The Ackermann function is strictly monotonically increasing
in the �rst argument as well, i.e., ∀x, y ∈ N,

a(x, y) < a(x+ 1, y).

Proof. Using Lemma II.4 �rst and then Lemma II.5, we obtain

a(x, y) < a(x, y + 1) ≤ a(x+ 1, y).
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II.4 The Ackermann function is not FOR computable

Let P be a FOR program that uses the variables x0, . . . , x`. Assume that
these variables are initialized with the values v0 . . . v` and that after the
execution of P , the variables contain the values v′0 . . . v

′
`. We now de�ne a

function fP (n) that essentially measures the size of the output that a FOR
program can produce (in terms of the size of the input). fP is de�ned via

fP (n) = max

{∑̀
i=0

v′i

∣∣∣∣∣ ∑̀
i=0

vi ≤ n

}
.

In other words, fP (n) bounds the sum of the values of x0, . . . , x` after the
execution of P in terms of the sum of the values of x0, . . . , x` before the
execution of P .

Lemma II.7 For every FOR program P there is a k ∈ N such that

fP (n) < a(k, n).

Proof. By structural induction. We can assume w.l.o.g. that the sim-
ple instructions of the FOR program are either xi++ or xi−− or xi := 0,
cf. Exercise 7.7

Furthermore, we assume that for every FOR loop for xi do Q od in P ,
xi does not appear in Q. If it does, we can replace the loop �rst by xk := xi;
for xk do P1 od where xk is an unused variable. And of course, since we have
only a restricted set of simple statements, we have to replace the assignment
xk := xi by something else, too. For the moment, let P̂ be the resulting
program. Let xi be an original variable of P . After the execution of P̂ , the
value of xi is the same as the value of xi after the execution of P . Therefore,
fP (n) ≤ fP̂ (n) and it su�ces to bound fP̂ (n).

Induction base: Let P = xi++ be a FOR program. If the sum of the values
is bounded by n before the execution of P , then it is bounded by n+ 1 after
the execution. Thus

fP (n) ≤ n+ 1 < a(1, n).

If P = xi := 0 or P = xi−−, then the size of the ouput cannot be larger
than the size of the output. Hence

fP (n) ≤ n < a(0, n),

too. This �nishs the induction base.

Induction step: For the induction step, let P = P1;P2 be a FOR program.
From the induction hypothesis we know that fPi(n) < a(ki, n) for constants
ki and i ∈ {1, 2}. After the execution of P1, the sum of the values of the
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96 II. Ackermann function

variables is bounded by a(k1, n) which is also a bound on the sum of the
values of the variables before the execution of P2. Altogether,

fP (n) = fP2(fP1(n))
< a(k2, a(k1, n))
< a(k3, a(k3, n)) by monotonicity with k3 = max{k1, k2}
< a(k3, a(k3 + 1, n))
= a(k3 + 1, n+ 1) per de�nition
< a(k3 + 2, n).

Now, let P = for xi do P1 od be a FOR program. Recall that xi does not
occur in P1. From the induction hypothesis, we get fP1(n) < a(k1, n). Fix
a tuple ν0, . . . , ν` for which the maximum is attained in the de�nition of fP .
Let m := νi be the value of xi in this tuple. We distinguish three cases:

m = 0: In this case, fP (n) = n < a(0, n), since the loop is not executed at
all.

m = 1: Here, fP (n) ≤ fP1(n) < a(k1, n), since the loop is executed only
once.

m > 1: Here we have,

fP (n) = fP1 ◦ . . . ◦ fP1︸ ︷︷ ︸
m times

(n−m) +m

< a(k1, fP1 ◦ . . . ◦ fP1︸ ︷︷ ︸
m−1 times

(n−m)) +m

≤ a(k1, fP1 ◦ . . . ◦ fP1︸ ︷︷ ︸
m−1 times

(n−m)) +m− 1

...

≤ a(k1, a(k1, . . . a(k1, n−m)))

< a(k1, a(k1, . . .︸ ︷︷ ︸
m times

, a(k1 + 1, n−m)))

< a(k1 + 1, n).

Theorem II.8 The Ackerman function a is not FOR computable.

Proof. Assume that a was FOR computable, then â(k) = a(k, k) is FOR
computable as well. Let P be a FOR program for â. Lemma II.7 tells us
that there is a k such that

â(k) ≤ fP (k) < a(k, k) = â(k),

a contradiction. This proves that a is not FOR computable.
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Program 9 Ackermann function

Input: x, y
1: push(S, x);
2: push(S, y);
3: while size(S) > 1 do
4: y := pop(S);
5: x := pop(S);
6: if x = 0 then
7: push(S, y + 1);
8: else
9: if y = 0 then
10: push(S, x− 1);
11: push(S, 1);
12: else
13: push(S, x− 1);
14: push(S, x);
15: push(S, y − 1);
16: �
17: �
18: od
19: x0 := pop(S);
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9 Gödel numberings

In this chapter, we address two fundamental questions. The �rst one is: How
many WHILE programs are there? And the second one is: How can we feed
a WHILE program into another WHILE program as an input?

There are certainly in�nitely many WHILE programs: x0 := 0 is one,
x0 := 0; x0 := 0 is another, x0 := 0; x0 := 0; x0 := 0 is a third one; I guess
you are getting the idea. But there are di�erent �sorts of in�nite�.

De�nition 9.1 A set S is countable if there exists an injective1 function
S → N. If there is a bijection S → N, then S is called countably in�nite.

Exercise 9.1 Prove that if there is an injective function f : S → N such
that im f is in�nite, then there is a bijective function S → N.

Exercise 9.2 Prove the following: If S is countable, then S is �nite or
countably in�nite.

Recall that the pairing function 〈., .〉 is a bijection from N×N→ N. Thus
N× N is countable, too.

Exercise 9.3 1. Prove that Q is countable.

2. Prove that if A and B are countable, so is A×B.

We will show that the set of all WHILE programs is countably in�nite.
By assigning each WHILE program a natural number in a unique way, we
can feed them into other WHILE programs, too. For just proving that the
set of all WHILE programs is countable, we can use any injective function.
But for the purpose of feeding WHILE programs into WHILE programs, this
function should also have some nice properties.

We will construct an bijective function göd : W → N, that is, di�erent
WHILE programs get di�erent numbers. But this is not enough, we also
need the following property:

� There is a WHILE program U that given i, x ∈ N computes ϕP (x)
where P = göd−1(i).

Remark 9.2 In some books, the mapping göd is only required to be injective.
In this case, we also need a second WHILE program C, that given i ∈ N,
outputs 1 if i ∈ im göd and 0 otherwise, that is, C decides im göd. Since our
mapping will be bijective, we can set C = x0 := 1.

1Recall that injective includes that the function is total
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Furthermore, given i ∈ N it is �easy� to �nd the WHILE program P with
göd(P ) = i. �Easy� is not formally speci�ed here. We could extend the
WHILE language and add a print command that can print �xed strings and
the content of variables. Then it is quite easy to print P if i is given.

Such a mapping göd is usually called Gödel numbering, named after the
mathematician Kurt Gödel. The term �Gödel numbering� is used for many
di�erent things, so be careful. (The existence of U might not be included
in the de�nition.) Gödel numberings allow us to treat programs as data.
WHILE programs can now analyze and manipulate other WHILE programs.

Excursus: Kurt Gödel

Kurt Gödel (born 1906 in Brno, Austria�Hungary (now Czech Republic) and died
1978 in Princeton, USA) was a mathematician and logician.

He is best known for his incompleteness theorem which roughly says that in any
self-consistent recursive axiomatic system powerful enough to describe the arith-
metics of N, there are theorems that are true but cannot be deduced from the
axioms. (More one this later.) This destroyed David Hilbert's dream that every-
thing in mathematics can be proven from a correctly-chosen �nite system of axioms

In Princeton, Kurt Gödel became a close friend of Albert Einstein. Gödel, to
put it nicely, was a rather complicated person.

We de�ne a concrete Gödel numbering göd for WHILE programs that
we will use throughout this lecture. göd will be de�ned inductively. We will
use our pairing function 〈., .〉. But we need a second pairing function, too.

Fact 9.3 The map given by (r,m) 7→ 〈r,m〉5 := 5m + r is a bijection
{0, 1, 2, 3, 4} × N→ N.

We denote the projections that invert 〈., .〉5 by π1 and π2, since there
will usually no confusion with the projections that invert 〈., .〉. Note that
π1(n) = n mod 5 and π2(n) = bn/5c.

We start with the simple statements:

1. The statement xi := xj + xk is encoded by 〈0, 〈i, 〈j, k〉〉〉5.

2. The statement xi := xj − xk is encoded by 〈1, 〈i, 〈j, k〉〉〉5.

3. The statement xi := c is encoded by 〈2, 〈i, c〉〉5.

The while loop and the concatenation of programs is encoded as follows:

1. If P = while xi 6= 0 do P1 od, then göd(P ) = 〈3, 〈i, göd(P1)〉〉5.

2. If P = [P1;P2], then göd(P ) = 〈4, 〈göd(P1), göd(P2)〉〉5.

Remark 9.4 Instead of 〈., .〉5, we could also use the function 〈., .〉. Then
göd would only be injective, which would be �ne for our purposes. Being
bijective spares us some case distinctions.
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Remark 9.5 The Gödelnumbers of [[P1;P2];P3] and [P1; [P2;P3]] are di�er-
ent, but this is o.k., since syntactically, they are di�erent programs.

Lemma 9.6 göd is well-de�ned.

Proof. The proof is again by structural induction.

Induction base: Obviously, göd(P ) is well-de�ned for all P ∈ W0.

Induction step: Now assume that P ∈ Wn for some n. Then either P =
while xi 6= 0 do P1 od or P = [P1;P2] for some P1, P2 ∈ Wn−1. By
the induction hypothesis, göd(P1) and göd(P2) are both well-de�ned. Thus
göd(P ) = 〈3, 〈i, göd(P1)〉〉5 or göd(P ) = 〈4, 〈göd(P1), göd(P2)〉〉5, respec-
tively, are both well-de�ned, too.

Lemma 9.7 göd is injective.

Proof. We show the statement that for all n, göd(P ) = göd(Q) implies
P = Q for all P,Q ∈ Wn. From this, the assertion of the lemma follows. (So
we show that for all n, göd restricted to Wn is injective. Since

⋃
n∈NWn =

W, this implies the injectivity of göd :W → N.)
Induction base: We prove the statement for all programs inW0. Assume that
göd(P ) = göd(Q) for some P,Q ∈ W0. In particular, t := π1(göd(P )) =
π1(göd(Q)). Since P ∈ W0, t ∈ {0, 1, 2}. Assume t = 0. Then π2(göd(P )) =
〈i, 〈j, k〉〉 and i, j, k are unique, since 〈., 〈., .〉〉 is a bijection N3 → N. Since
göd(P ) = göd(Q) also implies π2(göd(P )) = π2(göd(Q)), we get P = Q.
The cases t = 1, 2 are treated in the same way.

Induction step: Now assume that göd(P ) = göd(Q) and assume that P ∈
Wn \ Wn−1 for some n > 0 and Q ∈ Wn.

2 Since n > 0, göd(P ) is ei-
ther 〈3, 〈i, göd(P1)〉〉5 or 〈4, 〈göd(P1), göd(P2)〉〉5 for some programs P1, P2 ∈
Wn−1. We only treat the case göd(P ) = 〈3, 〈i, göd(P1)〉〉5, the other case is
an exercise. göd(P ) = göd(Q) in particular implies that π1(göd(P )) =
π1(göd(Q)). This shows that göd(Q) = 〈3, 〈j, göd(Q1)〉〉5. But also π2(göd(P )) =
π2(göd(Q)), i.e, 〈i, göd(P1)〉 = 〈j, göd(Q1)〉. But since 〈., .〉 is a bijection,
this means that i = j and göd(P1) = göd(Q1). By the induction hypothesis,
P1 = Q1. Thus P = Q.

Corollary 9.8 The set of all WHILE programs W is countable.

Exercise 9.4 Fill in the missing part in the proof of Lemma 9.7.

Lemma 9.9 göd is surjective.

2We know that P,Q ∈ Wn. We can assume that one of them, say P , is not in Wn−1,
otherwise we would be done by the induction hypothesis. The other one could still be
contained in Wn−1, though.
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Proof. We prove by induction on n that for all n, there is a WHILE
program P with göd(P ) = n.
Induction base: We have 0 = 〈0, 〈0, 〈0, 0〉〉〉 = göd(x0 := x0 + x0).
Induction step: Let n = 〈r,m〉5 with 0 ≤ r ≤ 4. We distinguish �ve cases,
depending on r.

We start with r = 0. There are numbers i, j, k such that 〈i, 〈j, k〉〉 = m,
since our pairing function 〈., .〉 is surjective. Therefore

n = 〈0,m〉5 = 〈0, 〈i, 〈j, k〉〉〉5 = göd(xi := xj + xk).

The cases r = 1, 2 are treated similarly, we can write n = göd(xi := xj −xk)
for appropriate numbers i, j, k or n = göd(xi := c) for appropriate numbers
i, c, respectively.

If r = 3, then we choose numbers i, s such that m = 〈i, s〉. Our pairing
function ful�lls 〈x, y〉 ≥ x, y for all x, y. Since r = 3, n > m ≥ s. There-
fore, we can apply the induction hypothesis and write s = göd(Q) for some
WHILE program Q. Thus

n = 〈3, 〈i, göd(Q)〉〉5 = göd(while xi 6= 0 do Q od).

The case r = 4 can be treated in the same way, we write m = 〈x1, x2〉 and
obtain n = göd([Q1;Q2]), where xi = göd(Qi), i = 1, 2.

Excursus: Programming systems

The mapping göd associates with every i ∈ N a function ϕgöd−1(i). Instead of
ϕgöd−1(i), we will often write ϕi.

De�nition 9.10 1. A sequence (ψi)i∈N is called a programming system if the
set of all ψi is precisely R, the set of all WHILE computable functions.

2. It is universal, if the programming system has a universal program, i.e, there
is an index u such that ψu(〈j, x〉) = ψj(x) for all j, x ∈ N.

3. A universal programming system is called acceptable if there is an index c
such that ψψc(〈j,k〉) = ψj ◦ ψk.

The sequence (ϕi)i∈N of WHILE computable functions is an acceptable pro-
gramming system. It is certainly a programming system and we will see soon that
it is universal by constructing a universal program U . To see that it is acceptable,
note that 〈4, 〈k, j〉〉 is the Gödel number of ϕj ◦ ϕk, if j, k ∈ N. c will be the Gödel
number of the program computing 〈4, .〉

There are other programming systems and we will see some of them. Everything
that we prove in the remainder of this part is valid for every acceptable programming
system. For instance, the set of all functions computed by JAVA programs is an
acceptable programming systems. (We have to identify ASCII texts with natural
numbers somehow. We will formally do this in later chapters.)
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10 Diagonalization

In this chapter we will answer the question whether there is a function N→ N
that is not computable by a WHILE program. (This will be a mathemati-
cian's answer. It will be true but absolutely useless. ;-) �Useless� here means
that the function we construct is not natural in some sense. We will prove in
later chapters that there are indeed many important and natural functions
that are not WHILE computable.)

10.1 Proof by �counting�

Basically, we will show that the set of all total functions N → N is not
countable. Even the set of all functions N→ {0, 1} is not countable.

Theorem 10.1 The set of all total functions N→ {0, 1} is not countable.

Proof overview: The proof will use a technique that is called Cantor's
diagonal argument. We assume that the set of all total functions N→ {0, 1},
call it F , is countable. Then there is a bijection n between F and N, i.e.,
each function in f ∈ F gets a �number� n(f). We construct a total function
c : N → {0, 1} that di�ers from every f ∈ F on the input n(f). c ∈ F by
construction, on the other hand it di�ers from every f ∈ F on some input.
This is a contradiction.

Proof. Assume that F is countable and let n : F → N be a bijection. (F
is certainly in�nite and by Exercise 9.1, we can assume that n is bijective.)
Let fi be the function in F that is mapped onto i by n, i.e., n(fi) = i for all
i ∈ N.

We arrange the values of the functions fi in a 2-dimensional tabular. The
ith row contains the values of fi and the jth column contains the values of
all functions on input j. This means that the entry in position (i, j) contains
the value fi(j) (see Figure 10.1).

Now we de�ne the function c as follows: c(i) = 1− fi(i) for all i ∈ N. In
other words,

c(i) =

{
0 if fi(i) = 1,

1 if fi(i) = 0.

c di�ers from the fi's in the entries that are underlined in the table in
Figure 10.1. Clearly c ∈ F . But this means that there is an index i0 such
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10.1. Proof by �counting� 103

0 1 2 3 . . .

0 f0(0) f0(1) f0(2) f0(3) . . .

1 f1(0) f1(1) f1(2) f1(3) . . .

2 f2(0) f2(1) f2(2) f2(3) . . .

3 f3(0) f3(1) f3(2) f3(3) . . .
...

...
...

...
...

. . .

Figure 10.1: The diagonalization scheme

that fi0 = c, since {fi | i ∈ N} = F . In particular,

fi0(i0) = c(i0) = 1− fi0(i0).

But this is a contradiction since fi0(i0) is a natural number and the equation
x = 1− x has no integral solution.

Corollary 10.2 There is a total function N → {0, 1} that is not WHILE
computable.

Proof. The proof is by contradiction: If every function from F , the set
of all total functions N→ {0, 1} was WHILE computable, then the image of
the mapping given by P 7→ ϕP would contain F . But this means that there
is an injective mapping i1 from F to some subset of W. Since the set W
of all WHILE programs is countable, there is an injective mapping i2 from
W → N. The composition i2 ◦ i1 is an injective mapping from F to N. This
means that F is countable, a contradiction.

Since the characteristic function of a subset of N is a function N→ {0, 1},
we get the following corollary.

Corollary 10.3 There is a subset of N that is not recursive.

Excursus: Cantor's diagonal argument

Georg F. L. P. Cantor (born 1845 in St. Petersburg, died 1918 in Halle), was a
German mathematician. He is known as one of the creators of set theory.

We saw two accomplishments of Cantor in this lecture: The proof that N2

is again countable and the diagonal argument that show that the set of all total
functions N→ {0, 1} is not countable.

The following conversation between Dedekind and Cantor is reported:
Dedekind: �Eine Menge stelle ich mir vor wie einen Sack mit Dingen darin.�
Cantor (in theatric pose): �Eine Menge stelle ich mir vor wie einen Abgrund.�
Cantor should be right.
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10.2 Explicit construction

The proof of the existence of a characteristic function that is not WHILE
computable was indirect and used the fact that there are more characteristic
functions than WHILE programs. Basically the same proof also yields a di-
rect construction of a characteristic function that is not WHILE computable.
This construction will be explicit, i.e., we can precisely say how the function
looks like. The function c that we will construct has the property that for
all i ∈ N, c(i) is de�ned i� ϕP (i) is not de�ned, where P = göd(i). In other
words, c(i) is de�ned whenever the WHILE program with Gödel number i
does not halt on i. This c is at least �semi-natural�. We will see soon how
to prove that natural tasks, like veri�cation, are not computable.

Overview over alternative proof of Corollary 10.2: We will use the same
diagonalization scheme as in Figure 10.1. The construction becomes explicit,
since we do not use a hypothetical enumeration of all characteristic functions
but an enumeration of all WHILE programs that we already constructed.

Alternative proof of Corollary 10.2. We constructed an bijective mapping
göd from the set of all WHILE programs to N in Chapter 9. We now de�ne
a sequence of functions f0, f1, f2, . . . by

fi(j) = ϕgöd−1(i)(j).

for all i and j. That means, when P is the WHILE program such that
göd(P ) = i, then fi will be the function ϕP computed by P .

Now de�ne the function c by

c(n) =

{
1 if fn(n) = 0 or is unde�ned

0 otherwise

for all n ∈ N. There is no WHILE program P that can compute c, because
if göd(P ) = i, then c di�ers from ϕP at the input i.

Remark 10.4 c essentially is the characteristic function of the set of all
Gödel numbers i such that göd−1(i) either does not halt on i or returns 0.

Excursus: Programming systems II

Corollary 10.2 holds for all programming systems. All that we used is that there is
a mapping i 7→ ψi such that the image of this mapping is R.
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10.3 Exercises

Intermediate exercise

Exercise 10.1 Show that for any nonempty set S, there is no bijection be-
tween S and its power set P(S).
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11 A universal WHILE program

In this chapter, we will construct the universtal WHILE program U for our
function göd. Assume that we are given an index g ∈ N, i.e., an encoding g
of a WHILE program P and an m ∈ N. U now has to simulate P on input
m with only a �xed number of variables. The program P has a �xed number
of variables, too, but since U has to be capable of simulating every WHILE
program, there is no a priori bound on the number of variables in P . Thus
U will use an array X to store the values of the variables of P . Luckily, we
do already know how to simulate arrays in WHILE (and even FOR). Let `
be the largest index of a variable that occurs in P . Then an array of length
` + 1 is su�cient to store all the values. It is not too hard to extract this
number ` given g. But since any upper bound on ` is �ne too, we just use
an array of length g in U . g is an upper bound on ` because of Exercise 11.1
(and the way we constructed göd).

Exercise 11.1 Show that for all j, k ∈ N, 〈j, k〉 ≥ max{j, k}.

A simple statement is encoded as 〈0, 〈i, 〈j, k〉〉〉5 (addition), 〈1, 〈i, 〈j, k〉〉〉5
(subtraction), or 〈2, 〈i, c〉〉5 (initialization with constant). Using π1, we can
project onto the �rst component of these nested pairs and �nd out whether
the statement is an addition, subtraction, or initialization with a constant.
The result that we get by application of π2 then gives us the information
about the variables and/or constants involved. Program 10 shows how to
perform the addition. X stores the array that we need to simulate. When
we plug this routine into U , we might have to rename variables.

Program 10 Subroutine for addition

Input: 〈i, 〈j, k〉〉 stored in variable x2

1: x3 := π1(x2);
2: x4 := π1(π2(x2));
3: x5 := π2(π2(x2));
4: X[x3] := X[x4] +X[x5]

Exercise 11.2 Write the corresponding programs for subtraction and ini-
tialization with a constant.

More problematic are while loops and concatenated programs. We will
use a stack S to keep track of the program �ow. Luckily, we know how to
implement a stack in WHILE (and even FOR).
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Program 11 is our universal WHILE program. (Look at the code for
a while. Then try to imagine you had to write a universal C++ program.
Next, thank your professor.) There are �ve important variables in it whose
meaning we explain below:

X: the array that stores the values of the variables in the pro-
gram P := göd−1(g).

S: the stack that stores (encodings of) pieces of P to be executed
later

cur : a variable that stores the piece of P that we are right now
simulating

term: is 0 if our simulation terminated and 1 otherwise.

type: stores the type (0 to 4) of the current statement that we
are simulating

In lines 1 to 5, we initalize X and store the input m in X[0]. Our current
program that we work on is g. We will exit the while loop if we �nish the
simulation of P . cur will always be of the form

� 〈0, 〈i, 〈j, k〉〉〉5 (addition)

� 〈1, 〈i, 〈j, k〉〉〉5 (subtraction)

� 〈2, 〈i, c〉〉5 (initialization)

� 〈3, 〈i, göd(P1)〉〉5 (while loop)

� 〈4, 〈göd(P1), göd(P2)〉〉5 (concatenation)

In line 6, we set type := π1(cur). This value is between 0 to 4. If type ∈
{0, 1, 2}1, then we just have to simulate an addition, subtraction, or initital-
ization. This is easy. The next two cases are far more interesting.

If type = 3, then cur = 〈3, 〈i, göd(P1)〉〉. So we have to simulate a while
loop while xi 6= 0 do P1 od. In line 18, we check whether the condition
xi 6= 0 is ful�lled. If not, then we do not enter the while loop. If yes, then
we do the following: First we simulate P1 once and then we simulate the
while loop again. Therefore, we push cur (which equals 〈3, 〈i, göd(P1)〉〉)
and π2(π2(cur)) (which equals göd(P1)) on the stack.

If type = 4, then cur = 〈4, 〈göd(P1), göd(P2)〉〉. We push π2(π2(cur))
(which is göd(P2)) on the stack and then π1(π2(cur)) (which is göd(P1)). In
this way, we will �rst execute P1 on top of the stack and then P2.

At the end of the while loop, we check whether the stack is empty. If yes,
then our simulation has �nished and we just have to copy X[0], the output
of the simulation, into x0. If the stack is not empty, we pop the next piece
of program from the stack, store it into cur , and go on with the simulation.

1That is not 100% correct; what we mean is that the value of type is in {0, 1, 2}. We
will use this sloppy notation often in the remainder of this chapter.
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108 11. A universal WHILE program

Program 11 Universal WHILE program U

Input: Gödel number g of P , input m of P
Output: ϕP (m) if P terminates on m. Otherwise U does not terminate.
1: X := 0; {Sets all entries of X to 0}
2: X[0] := m; {Stores input for simulation}
3: S := 〈0, 0〉; {Empty stack}
4: term := 1;
5: cur := g;
6: while term 6= 0 do
7: type := π1(cur);
8: if type = 0 then
9: simulate addition (as in Program 10).
10: �
11: if type = 1 then
12: simulate subtraction.
13: �
14: if type = 2 then
15: simulate initialization with constant.
16: �
17: if type = 3 then
18: i := π1(π2(cur));
19: if X[i] 6= 0 then
20: push(S, cur); {push the loop once again}
21: push(S, π2(π2(cur))) {push the body of the loop}
22: �
23: �
24: if type = 4 then
25: push(S, π2(π2(cur))); {push two parts onto stack in reverse order}
26: push(S, π1(π2(cur)))
27: �
28: if isempty(S) = 0 then
29: cur := top(S); pop(S);
30: else
31: term := 0
32: �
33: od;
34: x0 := X[0];
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The key in proving the correctness of the universal WHILE program is
to show the following lemma. The subsequent Theorem 11.2 is a special case
of it.

Lemma 11.1 Let T be the state that corresponds to the content of X, let
σ be the content of stack S, and let P = göd−1(cur) before line 6 at the
beginning of the while loop. Let T ′ be the state that corresponds to the content
of X, when the content of S after line 28 at the end of the while loop is again
σ for the �rst time. Then T ′ = ΦP (T ), if this event occurs. If σ is never
again the content of S, i.e., U does not terminate, then ΦP (T ) is not de�ned,
i.e., P does not terminate when started in state T .

Exercise 11.3 Prove Lemma 11.1. You can use�ta dah!�structural in-
duction.

Theorem 11.2 There is a WHILE program U that given g ∈ N and m ∈
N, computes ϕgöd−1(g)(m) if ϕgöd−1(g)(m) is de�ned and does not terminate
otherwise.

Corollary 11.3 (Kleene normal form [Kle43]) Let f be a WHILE com-
putable function. Then there are FOR programs P1, P2, and P3 such that
the program

P1; while x1 6= 0 do P2 od; P3

computes f .2

Proof. Let P be some WHILE program for f and let g = göd(P ). Our
universal program U is in Kleene normal form. (Recall that arrays, stacks,
and the projections all could be realized by FOR programs.) Instead of
giving U the Gödel number g as an input, we hardwire it into the program,
i.e, in line 5, g is now a constant and not a variable.

The above theorem tells us that in principle, one while loop is as powerful
as any number of while loops. We need some for loops, though, in the
simulation of the stack and the array, for instance. However, this number of
for loops is also �xed!

11.1 Exercises

Basic exercises

Exercise 11.4 Show that the following function is FOR computable:

〈i, 〈x, t〉〉 7→

{
1 if program göd−1(i) halts on x after ≤ t steps
0 otherwise

2Formally, we did not de�ne the semantics of mixed WHILE and FOR programs. But
I am sure you can do it on your own.
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110 11. A universal WHILE program

�After ≤ t steps� here means after the execution of ≤ t simple statements.
Note that by de�nition, the body of a while loop is never empty.

Intermediate exercises

Exercise 11.5 Is there a universal FOR program, i.e., a FOR program U0

that given a Gödel number i of a FOR program P and an input x computes
ϕP (x)?
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12 The halting problem

The halting problem H is the following problem:

H = {〈g,m〉 | göd−1(g) halts on m}.

This is a natural problem. The special halting problem H0 is the following
special case:

H0 = {g | göd−1(g) halts on g}.

Here we want to know whether a WHILE program halts on its own Gödel
number. While this is not as natural as the regular halting problem, it is a
little easier to prove that it is not decidable. In the next chapter, we formally
show that it is indeed a special case of the halting problem and develop a
general method to show that problems are not decidable.

12.1 The halting problem is not decidable

Theorem 12.1 H0 /∈ REC, i.e., the special halting problem is not decidable.

Proof. The proof is by contradiction. Assume that there is a WHILE
program P0 that decides H0, i.e., ϕP0 = χH0 . In particular, P0 always
terminates. Consider the following program P :

1: P0;
2: if x0 = 1 then
3: x1 := 1;
4: while x1 6= 0 do
5: x1 := 1
6: od
7: �

What does P do? It �rst runs P0. If P0 returns 0, i.e., x0 = 0 after running
P0, then P will terminate. If P0 returns 1, then P enters an in�nite loop
and does not terminate. (Note that P0 either returns 0 or 1.)

Now assume that P terminates on input göd(P ). In this case, P0 returns
0 on göd(P ). But this means, that P does not terminate on göd(P ), a
contradiction.

If P does not terminates on göd(P ), then P0 returns 1 on göd(P ). But
this means that P terminates on göd(P ), again a contradiction.

Since P either terminates on göd(P ) or does not, this case distinction is
exhaustive, and therefore, P0 cannot exist.
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112 12. The halting problem

Excursus: Alan M. Turing and the halting problem

Alan M. Turing (born 1912, died 1954) was a British mathematician and cryptog-
rapher. He is one of the parents of Theoretical Computer Science.

He studied the halting problem (for Turing machines, a model that we will see
soon and that is equivalent to WHILE programs) to show that Hilbert's Entschei-
dungsproblem is not decidable in 1936. (This was done indepently by Alonzo
Church whom we will meet later.) The Entscheidungsproblem is the problem in
symbolic logic to decide whether a given �rst-order statement is universally valid
or not. It was posed in this form by D. Hilbert in 1928 in the context of Hilbert's
program.

During World War II, Turing contributed to the British e�orts of breaking the
German ciphers. He died like snow white.

Further reading:
� The Turing Archive. www.turingarchive.org
� Andrew Hodges. Alan Turing: The Enigma, Walker Publishing Company, 2000.

Excursus: Programming systems III

The halting problem is not decidable for any acceptable programming system. For
every acceptable programming system (ψi)i∈N, the special halting problem is the set
P = {i | ψi(i) is de�ned}. We have to show that there is no j such that χP = ψj .
Assume on the contrary that such an index j exists.

Consider a function f such that f(1) is unde�ned and f(0) = 0. (The remaining
values do not matter, we can assume that they are 0.) The function f is certainly
WHILE computable, hence there is an index k such that f = ψk.

Let ` = c(j, k) where c is the composition function of the programming system.
Then ψ`(`) = f ◦χP (`). This is a contradiction, since for all x, f ◦χP (x) is de�ned
if ψx(x) is unde�ned and unde�ned if ψx(x) is de�ned.

12.2 Recursively enumerable languages

While we cannot algorithmically decide whether a WHILE program P halts
on an input m or not, we can at least detect if P halts on m, just by
simulating P . Such a behaviour is sometimes called �semi-decidable�, since
we can output a 1 on all inputs 〈g,m〉 ∈ H (the �yes�-instances) but we
cannot output 0 on the inputs 〈g,m〉 /∈ H (the �no�-instances). Instead of
semi-decidable, we will use the term recursively enumerable.

De�nition 12.2 1. A language L ⊆ N is called recursively enumerable
if there is a WHILE program P such that

(a) for all x ∈ L, ϕP (x) = 1 and
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(b) for all x /∈ L, ϕP (x) = 0 or ϕP (x) is unde�ned.

2. The set of all recursively enumerable languages is denoted by RE.

Remark 12.3 In condition 1.(b) of the de�nition above, we can always as-
sume that ϕP (x) is unde�ned. We can modify P in such a way that whenever
it returns 0, then it enters an in�nite loop. Thus on x ∈ L, P halts (and out-
puts 1), on x /∈ L, P does not halt. We can de�ne a �modi�ed� characteristic
function χ′L by

χ′L(x) =

{
1 if x ∈ L,
unde�ned otherwise.

Then L ∈ RE i� χ′L is WHILE computable.

Theorem 12.4 The halting problem and the special halting problem are re-
cursively enumerable.

Proof. Let 〈g,m〉 be the given input. We simulate göd−1(g) on m using
the univeral WHILE program U . It is easy to see that this program termi-
nates if and only if göd−1(g) halts on m. If it terminates, then we return 1.

Remark 12.5 The set that corresponds to the characteristic function c con-
structed in the alternative proof of Corollary 10.2 is not recursively enumer-
able, since we diagonalized against all WHILE programs and not only those
that compute total functions.

Theorem 12.6 The following two statements are equivalent:

1. L ∈ REC.

2. L, L̄ ∈ RE.

Proof. For the �⇒� direction, note that L ∈ REC implies L̄ ∈ REC
(c.f. Exercise 12.2) and that REC ⊆ RE.

For the other direction, note that there are WHILE programs P and P̄
that halt on all m ∈ L and m /∈ L. So either P or P̄ halts on a given m.
The problem is that we do not know which. If we run P �rst then it might
not halt on m ∈ L̄ and we never have a chance to run P̄ on m.

The trick is to run P and P̄ in parallel. To achieve this, we modify
our universal WHILE program U . In the while loop of U , we will simulate
one step of P and one step of P̄ . (We need two stacks S1, S2 to do this,
two instances cur1, cur2 of the variable cur , etc.) Eventually, one of the
programs P or P̄ will halt. Then we know whether m ∈ L or not.

Corollary 12.7 H̄0 /∈ RE.
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Proof. We know that H0 is in RE but not in REC. By Theorem 12.6, H̄0

is not in RE.

The following exercise explains the name �recursively enumerable�:

Exercise 12.1 Show that the following three statements are equivalent:1

1. L ∈ RE.

2. There is a WHILE program P such that L = imϕP .

3. L = ∅ or there is a FOR program P such that L = imϕP .

The good, the bad, and the ugly

For a language A, exactly one of the following is true:

� A, Ā ∈ REC

� A ∈ RE but Ā /∈ RE (or vice versa)

� A, Ā /∈ RE

12.3 Exercises

Exercise 12.2 Prove that REC is closed under intersection, union, and com-
plementation, that is, if A,B ∈ REC, so are A ∩B, A ∪B, and Ā.

Exercise 12.3 1. Prove that RE is closed under union and intersection.

2. Prove that RE is not closed under complementation.

1This explains the name recursively enumerable: There is a WHILE computable func-
tion, here ϕP , that enumerates L, that means, if we compute ϕP (0), ϕP (1), ϕP (2), . . . , we
eventually enumerate all elements of L.

© Markus Bläser 2007�2021



13 Reductions

Let us come back to the veri�cation problem: Does a given program match a
certain speci�cation? One very general approach to model this is the follow-
ing: Given two encodings i, j ∈ im göd, do the WHILE programs göd−1(i)
and göd−1(j) compute the same function, i.e., is ϕgöd−1(i) = ϕgöd−1(j). The
index i is the program that we want to verify, the index j is the speci�cation
that it has to match. So let

V = {〈i, j〉 | ϕgöd−1(i) = ϕgöd−1(j)}.

One can of course complain that a WHILE program is a very powerful spec-
i�cation. So we will also investigate the following (somewhat arti�cal but
undeniably simple) special case:

V0 = {i | ϕgöd−1(i)(x) = 0 for all x ∈ N}.

So i ∈ V0 means that the WHILE program göd−1(i) outputs 0 on every input
(and in particular halts on every input).

Another relevant and basic problem is the termination problem: Does a
WHILE program halt on every input:

T = {i | ϕgöd−1(i) is total}.

We will prove that none of these languages is decidable, i.e, V, V0, T /∈
REC. So there is no hope for a general and automated way to predict/prove
semantic properties of WHILE programs and henceforth of computer pro-
grams in general.

We use a concept called reductions, a prominent concept in computer
science. Assume someone gives you a JAVA procedure that �nds the mini-
mum in a list of integers. You can use this as a subroutine to quickly write
a JAVA program�though not the most e�cient one�that sorts a list. We
will use the same principle but �in the reverse direction�. Assume there is
a WHILE program that decides V0, say. Using this WHILE program, we
will construct a new WHILE program that decides the halting problem H0.
Since the later does not exists, there former cannot exists either. Thus V0 is
not in REC, too.

13.1 Many-one reductions

De�nition 13.1 Let L,L′ ⊆ N be two languages.
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1. A WHILE computable total function f : N → N is called a many-one
reduction from L to L′ if

for all x ∈ N: x ∈ L ⇐⇒ f(x) ∈ L′.

2. If such an f exists, then we say that L is recursively many-one re-
ducible to L′. We write L ≤ L′ in this case.

Example 13.2 Here is an example of a very simple reduction, we want to
reduce H0 ≤ H. The reduction is given by g 7→ 〈g, g〉, we have

g ∈ H0 ⇐⇒ göd−1(g) halts on g ⇐⇒ 〈g, g〉 ∈ H.

The mapping is obviously WHILE computable. This is of course a very
simple example. We will see more complicated examples soon. As a little
brain teaser: Can you prove the other direction, that is, H ≤ H0?

The next lemma shows the importance of reductions. If L ≤ L′, then
the fact that L′ is easy (that means, is in RE or REC) implies that L is easy,
too. The contraposition of this is: If L is hard (that is, is not in RE or REC)
then L′ is also hard.

Lemma 13.3 Let L,L′ ⊆ N and L ≤ L′. Then the following statements
hold:

1. If L′ ∈ RE, then L ∈ RE.

2. If L′ ∈ REC, then L ∈ REC.

Proof. Let f be a many one reduction from L to L′. We prove the �rst
statement. Since L′ ∈ RE, there is a program P ′ such that ϕP ′(m) = 1 for
all m ∈ L′ and ϕP ′(m) is unde�ned for all m /∈ L′. Consider the following
program P :

1: x0 := f(x0);
2: P ′

It computes ϕP = ϕP ′ ◦ f . We have

x ∈ L ⇒ f(x) ∈ L′ ⇒ ϕP ′(f(x)) = 1 ⇒ ϕP (x) = 1

and

x /∈ L ⇒ f(x) /∈ L′ ⇒ ϕP ′(f(x)) is unde�ned ⇒ ϕP (x) is unde�ned.

Thus L ∈ RE (as witnessed by P ). The second statement is shown in the
same fashion. In this case, the program P ′ outputs 1 if m ∈ L. If m /∈ L′,
then ϕP ′(m) = 0 instead of being unde�ned. Thus we only have to replace
�is unde�ned� in the second series of implications by �= 0� and then the
same proof works.
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Corollary 13.4 Let L,L′ ⊆ N and L ≤ L′. Then the following statements
hold:

1. If L /∈ RE, then L′ /∈ RE.

2. If L /∈ REC, then L′ /∈ REC.

Proof. These statement are the contrapositions of the statements of the
previous lemma.

Remark 13.5 The proof of the above lemma essentially shows that when
L ≤ L′ by a reduction f , then

χL = χL′ ◦ f and

χ′L = χ′L′ ◦ f

Since f is WHILE computable and the composition of two WHILE com-
putable functions is again WHILE computable, χL and χ′L are WHILE com-
putable, if χL′ and χ

′
L′ are.

Where is the subroutine idea gone...?

Assume there is a many one reduction f from H0 to V0. From a
(hypothetical) WHILE program P that decides V0, we get a program
Q for H0 as follows:

1: x0 := f(x0);
2: P

So a many-one reduction is a very special kind of subroutine use: We
only use the subroutine (P ) once and the output of our program (Q)
has to be the output of the subroutine.
Why do we use many-one reductions? Because it is su�cient for
our needs and because we get �ner results. For instance the �rst
statement of Lemma 13.3 is not true for Turing reductions (which is
a fancy name for arbitrary subroutine use).

Lemma 13.6 ≤ is a transitive relation.

Proof. Assume that L ≤ L′ and L′ ≤ L′′. Let f and g be the correspond-
ing reductions. Since f and g are WHILE computable, g ◦ f is, too. If P
and Q compute f and g, respectively, then [P ;Q] computes g ◦ f .
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L

L′
N N

f

f

Figure 13.1: A reduction f maps the elements of L (also called �yes�-
instances) to a subset of the elements of L′. The elements not in L (�no�-
instances) are mapped to a subset of the elements of N that are not in
L′. In short, �yes�-instances go to �yes�-instances and �no�-instances to �no�-
instances.

We claim that g ◦ f is a many-one reduction from L to L′. We have

x ∈ L ⇐⇒ f(x) ∈ L′ ⇐⇒ g(f(x)) ∈ L′′

for all x ∈ N by the de�nition of many-one reduction. This completes the
proof.

Exercise 13.1 Show the following: If L is many-one reducible to L′, then
L̄ is many-one reducible to L̄′. (Hint: Just have a look at Figure 13.1.)

13.2 Termination and Veri�cation

We show that neither V0 nor V nor T are decidable. Even worse, all three
problems are not recursively enumerable.

Lemma 13.7 H0 ≤ V0.

Proof. For a given input i, consider the following WHILE program Qi,
where P := göd−1(i):

1: x0 := i;
2: P ;
3: x0 := 0;

Note that Qi completely ignores its input. If P halts on its own Gödel
number i, then Qi always outputs 0, i.e., ϕQi(x) = 0 for all x. If P does not

© Markus Bläser 2007�2021



13.2. Termination and Veri�cation 119

halt on i, then Qi never halts, that is, ϕQi is the function that is nowhere
de�ned. In other words,

göd(P ) ∈ H0 ⇐⇒ göd(Qi) ∈ V0.

Thus the mapping f that maps i 7→ göd(Qi) is the desired reduction.
We only have to convince ourselves that f is indeed WHILE computable.

The Gödel numbers of the three parts of Qi:

� 〈2, 〈0, i〉〉5.

� i

� 〈2, 〈0, 0〉〉5.

Therefore, the reductions is given by

i 7→ 〈4, 〈〈2, 〈0, i〉〉5, 〈4, 〈i, 〈2, 〈0, 0〉〉5〉〉5〉〉5 (13.1)

The above mapping is WHILE computable since the pairing functions are.
So the reduction H0 ≤ V0 has an easy explicit description.1

Since V0 is a special case of V , V0 can be reduced to V .

Lemma 13.8 V0 ≤ V .

Proof. The reduction is given by i 7→ 〈i, e〉 where e is the Gödel number
of a WHILE program that computes the constant function 0.

Veri�cation is even harder than the halting problem, since V̄0 is not
recursively enumerable.

Lemma 13.9 V0 ≤ T .

Proof. For a given i ∈ N, construct the following WHILE program Ji:

1: P ;
2: while x0 6= 0 do
3: x0 := 1
4: od

If P does not compute the function that is constantly 0, then either P
does not halt on some input or halts and outputs something else. In the �rst
case, Ji does not terminate, because P does not terminate either. In the
second case, Ji does not terminate, because it enters an in�nite loop in lines

1Of course, we will see more complicated reductions for which such a formal proof
would get really lengthy. We do some of the reductions, like this one, in a very explicit
way, later, we will only sketch how a WHILE program for such a reduction would look
like.
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2�4. (Recall that the output of P0 is stored in x0. We need line 3, because
the body of a WHILE loop cannot be empty.) Thus, Ji terminates on all
inputs if and only if P outputs 0 on every input. Hence, the mapping that
maps i 7→ göd(Ji) is a many-one reduction from V0 to T . This mapping is
easily seen to be WHILE computable.

Exercise 13.2 Write down an explicit expression for the reduction in the
previous lemma to show that it is WHILE computable.

Lemma 13.10 H̄0 ≤ V0.

Proof overview: When we showed H0 ≤ V0, we constructed a WHILE
program Qi that simulated P := göd−1(i) on i and outputted 0 if P halted.
Now the program Qi would have to output 0 if P does not halt. This straight
forward approach obviously does not work here.

A parameter that we did not use are the inputs of Qi. We will simulate
P only for a �nite number of steps�the larger the input, the longer the
simulation.

Proof. For a given i ∈ N, consider the following WHILE program Ki

(using syntactic sugar at a maximum level):

1: Simulate P := göd−1(i) on i for x0 steps.
2: If P does not stop within x0 steps, then output 0.
3: Otherwise output 1.

If i /∈ H0, then in step 2 of Ki, P does not halt on i for any value of x0.
Thus Ki always outputs 0. If i ∈ H0, then there is a t ∈ N such that M
halts within t steps on i. Thus Ki will output 1 for every input ≥ t.

Thus the mapping i 7→ göd(Ki) is a many-one reduction from H̄0 to V0.
Like before, this mapping is WHILE computable. However, this time the
actual construction is much more tedious. We will not do it here. Convince
yourself that you could write a WHILE program for this mapping. In the
next chapter, we will see a more elegant way to design reductions.

Summarizing the result of this section, we get the following reductions:

H0, H̄0 ≤ V0 ≤ V, T.

For the complements of the mentioned languages, note that by Exercise 13.1,
we also get

H̄0, H0 ≤ V̄0 ≤ V̄ , T̄ .

Thus we obtain the following theorem.

Theorem 13.11 V , V0, and T are not recursively enumerable nor are their
complements.
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How to construct a many-one reduction . . .

To reduce L to L′:

1. First try to �nd for every i ∈ L an f(i) that is in L′ and for
every i /∈ L, �nd an f(i) that is not in L′.
If L is de�ned in terms of properties of functions computed by
WHILE programs (this is the �normal� case), try to map a given
encoding i that has (not) the property of L to an encoding f(i)
that has (not) the property of L′.

2. Give a formal proof that your mapping f has indeed the reduc-
tion property.

3. "Prove" that f is WHILE computable. (A formal proof of this
might be tedious. A quick argument is usually su�cient.)
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From now on, for i ∈ N, we will use ϕi as a synonym for ϕgöd−1(i); this is
only done to simplify notations as a reward for working through 14 chapters
so far.

14.1 S-m-n Theorem

Theorem 14.1 (S-m-n Theorem) For every m,n ≥ 1, there is a FOR
computable function Smn : Nm+1 → N such that for all g ∈ N, y ∈ Nm, and
z ∈ Nn

ϕm+n
g (y, z) = ϕnSmn (g,y)(z).

1

Proof overview: The statement of the theorem looks complicated at a �rst
glance, but it just states the following simple thing: Given a Gödel number
of a program that expects n + m inputs and a number y ∈ Nm, we can
compute the Gödel number of a program that specializes the �rst m inputs
to y. While the statement of the theorem is quite simple, it is often very
useful.

Proof. Let Pg = göd−1(g) the program that is given by g. Pg expects
m + n inputs. Given a y = (η0, . . . , ηm−1), we now have to construct a
program Qg,y that depends on g and y and ful�lls

ϕPg(y, z) = ϕQg,y(z) for all z ∈ Nn.

The following program Qg,y achieves this:

1: xm+n−1 := xn−1;

2:
...

3: xm := x0;
4: xm−1 := ηm−1;

1The superscripts n + m and n indicate the number of inputs to the program. Note
that the same program can have any number of inputs since we made the convention that
the inputs stand in the �rst variables at the beginning. So far, this number was always
clear from the context. Since it is important here, we added the extra superscript.
Strictly speaking ϕm+n

g expects one vector of length m+ n. y is a vector of length m and
z is a vector of length n. If we glue them together, we get a vector of length m+ n. For
the sake of simplicity, we write ϕm+n

g (y, z) instead of formally forming a vector of length
m+ n out of y and z and then plugging this vector into ϕm+n

g .
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14.1. S-m-n Theorem 123

5:
...

6: x0 := η0;
7: Pg

This program �rst copies the input z, which stands in the variables x0, . . . , xn−1

into the variables xm, . . . , xm+n−1. Then it stores y into x0, . . . , xm−1. The
values of y are hardwired into Qg,y. Then we run Pg on the input (x, y).
Thus Qg,y computes ϕPg(y, z) but only the entries from z are considered as
inputs.

The function

Smn : (g, y) 7→ göd(Qg,y)

is FOR computable. We saw how to show this in the last chapter. However,
it is also fairly easy to write down a Gödel number explicity, which we will
do now (for the last time): Note that the lines 1 to 3 of Qg,y do not depend
on g or y (but only on m and n). Therefore, this part has some �xed Gödel
number, say, h. The lines 4 to 6 depend on y and have Gödel number

h′ = 〈4, 〈〈2, 〈m− 1, ηm−1〉〉5, 〈4, 〈〈2, 〈m− 1, ηm−1〉〉5, . . .〉〉5, 〉〉5.

As a function of y, h′ is FOR computable, since the pairing functions are.
Thus göd(Qg,y) = 〈4, 〈h, 〈4, 〈h′, g〉〉5〉〉5.

This mapping above has the desired properties, since

ϕm+n
g (y, z) = ϕm+n

Pg
(y, z) = ϕnQg,y(z) = ϕngöd(Qg,y)(z) = ϕnSmn (g,y)(z)

for all y ∈ Nm and z ∈ Nn.

Excursus: Programming systems IV

The S-m-n theorem is valid for every acceptable programming system (ψi), but a
little more work is needed. We will here give a proof for the case m = n = 1,
the general case can be reduced to this by using pairing functions. Programming
systems only compute functions N→ N. The function ψki : Nk → N is now de�ned
as ψki (x1, . . . , xk) = ψi(〈x1, . . . , xk〉).

Let f(z) = 〈0, z〉 and g(y, z) = 〈y + 1, z〉. Both functions are WHILE com-
putable, hence there are indices i and j such that f = ψi and g = ψ2

j . Finally, we
de�ne a function h by

h(0) = i,

h(x+ 1) = c(j, h(x)) for x > 0.

where c is the composition function. h is certainly WHILE computable; we can
just start with h(0) = i, then compute h(1), h(2), h(3),. . . by applying c until we
get to the desired value.

Lemma 14.2 ψh(y)(z) = 〈y, z〉.
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Proof. The proof is by induction.
Induction base: ψh(0)(z) = ψi(z) = 〈0, z〉.
Induction step: Assume that ψh(y)(z) = 〈y, z〉. Now,

ψh(y+1)(z) = ψc(j,h(y))(z)

= ψj ◦ ψh(y)(z)
= ψj(〈y, z〉)
= 〈y + 1, z〉.

We set S1
1(e, y) = c(e, h(y)). We have

ψS1
1(e,y)

(z) = ψc(e,h(y))(z)

= ψe ◦ ψh(y)(z)
= ψ2

e(y, z).

The S-m-n Theorem will be the key to the results of this and the next chapter.

14.2 Reductions via the S-m-n Theorem

The S-m-n Theorem can be used to prove that a language is reducible to
another one. We here give an alternative proof of H̄0 ≤ V0.

Alternative proof of Lemma 13.10. Consider the function f : N2 → N
de�ned by

f(g,m) =

{
0 if göd−1(g) does not halt on g after ≤ m steps

1 otherwise

The function f is WHILE computable, we can use the clocked version of the
universal WHILE program U from Exercise 11.4. Let e be a Gödel number
of f . By the S-m-n Theorem,

f(g,m) = ϕ2
e(g,m) = ϕS1

1(e,g)(m)

for all g,m ∈ N. But by construction,

g ∈ H̄0 ⇐⇒ göd−1(g) does not halt on g

⇐⇒ f(g,m) = 0 for all m ∈ N
⇐⇒ S1

1(e, g) ∈ V0.

Thus S1
1(e, .) is the desired many one reduction.

© Markus Bläser 2007�2021



14.3. More problems 125

14.3 More problems

Here is another example, more of pedagogical value. Let c ∈ N. Let

Dc = {g | g ∈ N and |domϕg| ≥ c}

be the set of all encodings of WHILE programs that compute a function that
is de�ned for at least c di�erent arguments. Here is potential application:
As the last assignment of your programming lecture, you have to deliver a
program. You still need one point to be quali�ed for the exam. The TA
claims that your program does not halt on any input and you get no points
for your program. We will show that D1 /∈ REC. This is good for you, since
it means that the TA will not be able to algorithmically verify his claim.
On the other hand, we will show that D1 ∈ RE, which is again good for
you, since it means that if your program halts on at least one input, you can
algorithmically �nd this input and maybe get the missing point. . .

Theorem 14.3 For every c ≥ 1, H0 ≤ Dc.

Proof. Consider the following function f : N2 → N de�ned by

f(i, x) =

{
0 if ϕi(i) is de�ned,

unde�ned otherwise.

f is WHILE computable: Since f(i, x) is unde�ned if ϕi(i) is unde�ned, we
can just simulate göd−1(i) on i and return 0 if göd−1(i) halts.

Since f is WHILE computable, there is an index e ∈ N such that f = ϕe.
By the S-m-n Theorem,

f(i, x) = ϕ2
e(i, x) = ϕS1

1(e,i)(x) for all i and x.

Let i ∈ H0. Then f(i, x) is de�ned for all x by construction, i.e., the function
x 7→ f(i, x) is total and in particular, its domain has at least c elements.
Thus S1

1(e, i) ∈ Dc. Let i /∈ H0. Then f(i, x) is not de�ned for all x by
construction. Thus S1

1(e, i) /∈ Dc. The function i 7→ S1
1(e, i) is recursive by

the S-m-n theorem (note that e is just a �xed number), thus it is the desired
reduction.

Theorem 14.4 For every c, Dc ∈ RE.

Proof. We prove that χ′Dc is WHILE-computable. Consider the following
WHILE program P :

Input: g ∈ N
1: m := 0;
2: t := 1;

© Markus Bläser 2007�2021



126 14. More on reductions

3: while t 6= 0 do
4: Interpret m as a tuple (x1, . . . , xc, i)
5: if x1, . . . , xc are pairwise distinct then
6: simulate g on x1, . . . , xc for i steps one after another
7: if all c simulations halt then
8: t := 0
9: �
10: �
11: m := m+ 1;
12: od
13: return 1;

When we say that we interpret m as a tuple (x1, . . . , xc, i), we mean that
we use a bijection between N and Nc+1. In this way, by increasing m every
time in the loop, we will systematically enumerate all tuples in Nc+1.

If P halts and outputs 1, then it necessarily set t := 0 in line 8. In this
case, it found c pairwise distinct numbers such that g halted on all. Such
dom |ϕg| ≥ c. On the other hand, if dom |ϕg| ≥ c then let ξ1, . . . , ξc ∈ domϕg
be pairwise distinct. Since ξi is in domϕg, g will halt on ξi for 1 ≤ i ≤ c.
Let τ be the maximum number of steps made by g on ξ1, . . . , ξc. Then, when
the value of m corresponds to (ξ1, . . . , ξc, τ) in the while loop, all simulations
will stop and P will exit the loop. Therefore, ϕP = χ′Dc .

The golden rule of confusion

If something is not complicated enough,
invent many names for the same thing.
(In our case, history is responsible for this)

For a language L ⊆ N, the following statements are equivalent or just mean
the same thing by de�nition:
L ∈ REC, L is decidable, L is recursive, the characteristic function χL is
WHILE computable.

Also the following statements are equivalent or mean the same: L ∈ RE,
L is recursively enumerable, χ′L is WHILE computable (do not overlook
the prime!).

For a function f : N → N, the following statements are equivalent or

mean the same: f is recursive (but f can be partial!) and f is WHILE

computable.
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We saw numerous proofs that certain languages are not decidable. Rice's
Theorem states that any language L is not decidable if it is de�ned in se-
mantic terms. This means that whether i ∈ N is in L only depends on ϕi,
the function computed by the program göd−1(i).

15.1 Recursion Theorem

Theorem 15.1 (Recursion Theorem) For every WHILE computable func-
tion f : Nn+1 → N, there is a g ∈ N such that

ϕng (z) = f(g, z) for all z ∈ Nn.

Proof overview: Let f(g, z) = ϕe(g, z). Now the S-m-n Theorem states
that f(g, z) = ϕS1

n(e,g)(z) for all z. If we now set g = e, then we are almost
there: we have e on the left-hand side and S1

n(e, e) on the right-hand side
which is �almost the same�. If we now replace g, the �rst argument of f , by
something of the form S1

n(y, y), then basically the same argument gives the
desired result.

Proof. The function h de�ned by

h(y, z) := f(S1
n(y, y), z) for all y ∈ N, z ∈ Nn

is WHILE computable. Let e be a Gödel number for h, i.e., h = ϕe. The
S-m-n Theorem implies that

ϕn+1
e (y, z) = ϕnS1

n(e,y)(z) for all z ∈ Nn.

If we now set y = e and g = S1
n(e, e), we get

f(g, z) = f(S1
n(e, e), z) = h(e, z) = ϕn+1

e (e, z) = ϕnS1
n(e,e)(z) = ϕng (z).

Remark 15.2 Given the index e of h, we can compute g by a WHILE ma-
chine.
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128 15. Rice's Theorem

15.1.1 Self reference

Consider the function s : N2 → N given by s(y, z) = y for all y, z ∈ N. This
function is certainly WHILE computable. By the Recursion Theorem, there
is an index g such that

ϕg(z) = s(g, z) = g for all z ∈ N.

This means that the WHILE program given by the Gödel number g computes
the constant function with value g and in this sense outputs its own source
code.

Exercise 15.1 Show that there is a Gödel number j with domϕj = {j}.

15.1.2 The halting problem again

Here is an alternative proof that the halting problem H is not decidable:
Assume that H is decidable and P is a WHILE program that decides H.
Then following function

f(e, x) =

{
0 if ϕe(x) is unde�ned

unde�ned otherwise

is WHILE computable since we can check whether ϕe(x) is de�ned by en-
voking P . By the Recursion Theorem, there is an index e0 such that

ϕe0(x) = f(e0, x).

Assume that ϕe0(e0) is de�ned. Then f(e0, e0) = ϕe0(e0) is unde�ned by
construction, a contradiction. But if ϕe0(e0) were unde�ned, then f(e0, e0) =
ϕe0(e0) = 0, a contradiction again. Thus H cannot be decidable.

15.1.3 Code minimization

Finally, consider the following language

Min = {g | for all g′ with ϕg = ϕg′ , g ≤ g′}.

This is the set of all minimal WHILE programs (�shortest source codes�) in
the sense that for every g ∈ Min, whenever g′ computes the same functions
as g, then g ≤ g′.

Theorem 15.3 Min /∈ RE.

Proof. The proof is by contradiction. Assume that Min ∈ RE. Then
there is a WHILE computable total function h such that Min = imh. The
function

f : (g, w) 7→ f(g, w) = ϕk(w) with k = h(j) and j = min{i | g < h(i)}
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is WHILE computable since k can be determined by a WHILE program: We
successively compute h(0), h(1), h(2), . . . until we hit a j such that g < h(j).
Such a j exists, since Min is in�nite.

By the recursion theorem, there is a Gödel number e such that

ϕe(w) = f(e, w) = ϕk(w) for all w ∈ N.

By the construction of f , e < k. But we also have k ∈ Min = imh. This is
a contradiction, as ϕe = ϕk and e < k implies k /∈ Min.

15.2 Fixed Point Theorem

A �xed point of a function f : N → N is a z0 ∈ N such that f(z0) = z0.
Not every function has a �xed point, z 7→ z + 1 is an example. But every
WHILE computable total function f has a semantic �xed point in the sense
that z0 and f(z0) are the Gödel numbers of WHILE machines that compute
the same function.

Theorem 15.4 (Fixed Point Theorem) For all WHILE computable to-
tal functions f : N → N and for all n ∈ N \ {0} there is an e ∈ N such
that

ϕnf(e) = ϕne .

Proof. Let g(z, y) = ϕnf(z)(y) for all z ∈ N, y ∈ Nn. g is WHILE
computable since f is WHILE computable and total.

By the Recursion Theorem, there is an e ∈ N such that

ϕne (y) = g(e, y) = ϕnf(e)(y) for all y ∈ Nn.

15.3 Rice's Theorem

De�nition 15.5 (Index set) A language I ⊆ N is an index set if

for all i, j ∈ N: i ∈ I and ϕi = ϕj =⇒ j ∈ I.

An index set I is nontrivial if, in addition, I 6= ∅ and I 6= N.

Above, when we write ϕi, we mean ϕ1
i as usual, that is, we consider

WHILE programs with one input. This is done for the sake of simplicity,
the same would work for other numbers of inputs.

Exercise 15.2 Show that I is an index set if and only if there is a set F of
WHILE computable functions such that I = {i ∈ N | ϕi ∈ F}.
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If an index set contains a Gödel number i, then it contains all Gödel
numbers j of WHILE programs that compute the same function as göd−1(i).
In this sense, the index sets are de�ned by semantic properties, i.e., properties
that only depend on ϕi.

Example 15.6 The following languages are index sets:

1. V0 = {i ∈ N | ϕi(x) = 0 for all x ∈ N}.

2. T = {i ∈ N | ϕi is total}

3. Dc = {i ∈ N | |domϕi| ≥ c} for any c ∈ N,

4. Mon = {i ∈ N | ϕi is monotone}.

All of them are nontrivial except D0.

Example 15.7 The following sets are not index sets:

1. H0, the special halting problem,

2. N1 = {g ∈ N | g ≤ 10000}.

H0 is not an index set, since we constructed a Gödel number j with
domϕj = {j} in Exercise 15.1. Thus j ∈ H0 but any other Gödel number k
that computes the same function does not halt on its own Gödel number k.

N1 is not an index set since for any function f , there are arbitrarily large
WHILE programs, i.e., with arbitrarily large Gödel numbers, that compute
f .

Theorem 15.8 (Rice's Theorem) Every nontrivial index set is not de-
cidable.

Proof. Let I be a nontrivial index set. Since I is nontrivial, there are
Gödel numbers i and j such thats i ∈ I but j /∈ I. If I were decidable, then
the function h : N→ N de�ned by

h(x) =

{
i if x /∈ I
j if x ∈ I

would be WHILE computable. There is a Gödel number e by the Fixed
Point Theorem such that

ϕe = ϕh(e).

If e ∈ I, then ϕe = ϕj . But since I is an index set and j /∈ I, we get e /∈ I, a
contradiction. If e /∈ I, then ϕe = ϕi. But since I is an index set and i ∈ I,
we get e ∈ I, a contradiction again. Thus I cannot be decidable.

Rice's Theorem essentially says that every nontrivial semantic property
of WHILE programs is undecidable!
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15.4 Further exercises

There are nontrivial index sets that are recursively enumerable, for instance,
Dc. Others are not, like T or V0. Here is a criterion that is useful to prove
that an index set is not in RE.

Exercise 15.3 Let I be a recursively enumerable index set. Show that for
all g ∈ I, there is an e ∈ I with domϕe ⊆ domϕg and dom |ϕe| is �nite.
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Loosely speaking, Gödel's incompleteness theorem states that there are for-
mulas that are true but we cannot prove that they are true. Formulas here
means quanti�ed arithmetic formulas, i.e., we have formulas with existen-
tial and universal quanti�ers over the natural numbers with addition and
multiplication as our operations. �We cannot prove� means that there is no
e�ective way to show that the formula is true.

III.1 Arithmetic terms and formulas

De�nition III.1 Let V = {x0, x1, x2, . . . } be a set of variables.1 Arithmetic
terms over V are de�ned inductively:

1. Every n ∈ N is an arithmetic term.

2. Every x ∈ V is an arithmetic term.

3. If s and t are arithmetic term, then (s + t) and (s · t) are arithmetic
terms, too.
(These are words over the in�nite alphabet N ∪ V ∪ {(, ),+, ·}, not
polynomials or something like that.)

De�nition III.2 Arithmetic formulas are de�ned inductively:

1. If s and t are terms, then (s = t) is an arithmetic formula.

2. If F and G are arithmetic formulas, then ¬F , (F ∨ G), and (F ∧ G)
are arithmetic formulas.

3. If x is a variable and F is an arithmetic formula, then ∃xF and ∀xF
are arithmetic formulas.

Let F and G be formulas. We de�ne the fact that G is a subformula of
F inductively: If G = F , then G is a subformula of F . If F = ¬F1 and G
is a subformula of F1, then G is also a subformula of F . In the same way,
if F = (F1 ∨ F2) or F = (F1 ∧ F2) or F = ∃F1 or F = ∀xF1 and G is a
subformula of F1 or F2, then G is also a subformula of F .

Let x be a variable and F be a formula. The occurences of x in F are
these position in F that contain the symbol x. An occurence of x in the

1As usual, we will use other names for variables, too.
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formula F is bounded if this occurence is contained in a subformula of F of
the form ∃xG or ∀xG. An ocurrence that is not bounded it is called free.
F (x/n) denotes the formula that we get if we replace every free occurence
of x in F by n ∈ N.

A mapping a : V → N is called an assignment. We extend a to the set
of arithmetic terms in the obvious way:

a(n) = n for all n ∈ N,
a(s+ t) = a(s) + a(t) for all terms s and t,
a(s · t) = a(s)a(t) for all terms s and t

De�nition III.3 We de�ne true formulas inductively:

1. If s and t are terms, then (s = t) is true if a(s) = a(t) for all assign-
ments a.

2. F = ¬F1 is a true formula, if F1 is not a true formula

3. F = (F1 ∨ F2) is a true formula if F1 or F2 are true formulas.

4. F = (F1 ∧ F2) is a true formulas if F1 and F2 are true formulas.

5. F = ∃xF1 is a true formula if there is an n ∈ N such that F1(x/n) is
a true formula.

6. F = ∀xF1 is a true formula if for all n ∈ N, F1(x/n) is a true formula.

A formula that is not true is called false.

We de�ne a function e that is an injective mapping from the set of all
arithmetic terms and formulas to N. It is de�ned inductively, in the same
manner we de�ned the mapping göd. It is not bijective, but this does not
matter.

1. e(n) = 〈0, n〉 for all n ∈ N.

2. e(xi) = 〈1, i〉 for all i ∈ N.

3. e(s+ t) = 〈2, 〈e(s), e(t)〉〉 for all terms s and t.

4. e(s · t) = 〈3, 〈e(s), e(t)〉〉 for all terms s and t.

5. e(s = t) = 〈4, 〈e(s), e(t)〉〉 for all terms s and t.

6. e(¬F ) = 〈5, e(F )〉 for all formulas F .

7. e(F ∨G) = 〈6, 〈e(F ), e(G)〉〉 for all formulas F and G.

8. e(F ∧G) = 〈7, 〈e(F ), e(G)〉〉 for all formulas F and G.
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9. e(∃xiF ) = 〈8, 〈i, e(F )〉〉 for all formulas F .

10. e(∀xiF ) = 〈9, 〈i, e(F )〉〉 for all formulas F .

It is easy to see that the set im e is decidable. We can use a stack to analyze
whether a given number corresponds to a correctly formed formula. Like for
göd, the concrete construction is not so important.

De�nition III.4 The set of all encodings of true formulas is denoted by T .

III.2 Computability and representability

In this section we establish a link between formulas and WHILE programs.
If F is a formula and y1, . . . , yk are exactly these variables that occur free
in in F , then we indicate this by writing F (y1, . . . , yk). In this context,
instead of writing F (y1/n1, . . . , yk/nk), we often just write F (n1, . . . , nk) for
the formula in which every free occurence of yκ is replaced by nκ, 1 ≤ κ ≤ k.

De�nition III.5 A function f : Nk → N is called arithmetically repre-
sentable if there is an arithmetic formula F (y1, . . . , yk, z) such that

f(n1, . . . , nk) = s ⇐⇒ F (n1, . . . , nk, s) is true

for all n1, . . . , nk, s ∈ N.2 In the same way, we de�ne arithmetical repre-
sentability for funcions f : Nk → Nm.

Recall that partial functions A → B are merely relations R ⊆ A × B
such that for every a ∈ A, there is at most one b with (a, b) ∈ R. In the
de�nition above we want that R can be expressed by an arithmetic formula.

Example III.6 1. The addition function is arithmetically representable
by

(z = (y1 + y2)).

In the same way, we can represent the multiplication function.

2. The modi�ed di�erence function (y1, y2) 7→ max{y2 − y1, 0} is arith-
metically representable by

((y1 + z) = y2) ∨ ((y1 > y2) ∧ (z = 0))).

Above, (y1 > y2) shorthands

∃h(y1 = y2 + h+ 1).

2If f(n1, . . . , nk) is unde�ned, then F (n1, . . . , nk, s) is not true for all s ∈ N.
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3. Division with remainder is arithmetically representable, too: y1 / y2 is
represented by

∃r((r < y2) ∧ (y1 = z · y2 + r))

and y1 mod y2 is represented by

∃q((r < y2) ∧ (y1 = q · y2 + r)).

III.2.1 Chinese remaindering and storing many number in one

Our goal is to show that every WHILE computable function is arithmetically
representable. One ingredient in this construction is a method of storing
many natural numbers in one natural number. We saw such a method when
we constructed dynamic arrays in WHILE programs. To access the elements
of the arrays we used a FOR loop to repeatedly apply one of the two �inverse�
functions π1 and π2 of the pairing function 〈., .〉. Arithmetic formulas have
only a �xed number of variables, too, but do not have FOR loops. Therefore
we here construct another method for storing many values in one.

Theorem III.7 (Chinese remainder theorem) Let n1, . . . , nt be pairwise
coprime, i.e., gcd(ni, nj) = 1 for i 6= j. Then the mapping

πn1,...,nt : {0, . . . , n1 · · ·nt − 1} → {0, . . . , n1 − 1} × · · · × {0, . . . , nt − 1}
m 7→ (m mod n1, . . . ,m mod nt)

is a bijection.3

Proof. The proof is by induction on t.

Induction base: Assume that t = 2.4 Since n1 and n2 are coprime, there are
integers c1 and c2 such that 1 = c1n1 + c2n2.

5 Then

c1n1 mod n2 = 1 and c2n2 mod n1 = 1.

Since the sets {0, . . . , n1n2 − 1} and {0, . . . , n1 − 1} × {0, . . . , n2 − 1} have
cardinality n1n2, it is su�cient to show that the mapping is surjective. Let
(a1, a2) ∈ {0, . . . , n1 − 1} × {0, . . . , n2 − 1} be given. Consider a = a1c2n2 +
a2c1n1. We have

a mod n1 = a1 and a mod n2 = a2

3i mod j here denotes the unique integer r ∈ {0, 1, . . . , j − 1} such that i = qj + r for
some q.

4We could also assume that t = 1. Then the induction base would be trivial. But it
turns out that we would have to treat the case t = 2 in the induction step, so we can do
it right away.

5We can get such integers, the so-called cofactors, via the extended Euclidian algorithm
for computing gcds.
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since 1 = c1n1 + c2n2. a might not be in {0, 1, . . . , n1n2 − 1}, but there is
an integer i such that a′ = a+ in1n2 is. Since n1, n2|in1n2,

a′ mod n1 = a1 and a′ mod n2 = a2,

too.

Induction step: Let N = n2 · · ·nt with t > 2. n1 and N are coprime. By the
induction hypothesis, the mappings πn2,...,nt and πn1,N are bijections. We
have (m mod N) mod ni = m mod ni for all 2 ≤ i ≤ t, since ni|N . Thus

πn1,...,nt(m) = (m1, πn2,...,nt(m2))

where πn1,N = (m1,m2). Since both mappings above are bijections, their
�composition� πn1,...,nt is a bijection, too.

Lemma III.8 The number 1 + i · s!, 1 ≤ i ≤ s, are pairwise coprime.

Proof. Assume there are i < j and a prime number p such that p|(1+i·s!)
and p|(1 + j · s!). Thus p|((j − i) · s!). Since 0 < j − i < s and p is prime,
p|s!. From this p|1 follows.

Lemma III.9 There is a formula M such that for all B ∈ N there are
A,S ∈ N such that for all tuples (a1, . . . , ak) ∈ {0, . . . , B−1}k and 1 ≤ κ ≤ k,
M(x, κ,A, S) is true if and only if we substitute aκ for x.

Proof. Consider

M(x, u, v, w) = (x = v mod (1 + uw)) ∧ (v < 1 + uw).

Now set s = max{B, k} and S = s!. By Lemma III.8, the numbers 1 + iS,
1 ≤ i ≤ s are pairwise coprime. By the Chinese remainder theorem, there is
an A such that

aκ = A mod (1 + κS)

for 1 ≤ κ ≤ k, since aκ ≤ 1 + κS by the de�nition of s and S. Thus the
formula M(aκ, κ, A, S) is true. The second part of M ensures that no other
value ful�lls M(x, κ,A, S).

III.2.2 Main result

Theorem III.10 Every WHILE computable function is arithmetically rep-
resentable.
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Proof. We show by structural induction that for every WHILE program
P then function ΦP : N`+1 → N`+1, where ` is the largest index of a variable
in P , is arithmetically representable by a formula FP (y0, . . . , y`, z1, . . . , z`).

6

From this statement, the statement of the theorem follows, since

F (y0, . . . , ys, z) = ∃a1 . . . ∃a`FP (y0, . . . , ys, 0, . . . , 0, z, a1, . . . , a`)

represents the function Ns+1 → N computed by P .

Induction base: If P = xi := xj + xk, then we set

FP (y0, . . . , y`, z0, . . . , z`) = (zi = yj + yk) ∧
∧
m6=i

zm = ym.

If P = xi := xj − xk, then FP looks similar, we just replace the (zi =
yj + yk) part by the formula for the modi�ed di�erence from Example III.6.

If P = xi := c, then we replace the (zi = yj + yk) part by (zi = c).

Induction step: We �rst consider the case P = [P1;P2]. By the induction hy-
pothesis, the functions ΦPi : N`+1 → N`+1 7 are arithmetically representable
by formulas FPi , i = 1, 2. We have ΦP = ΦP2 ◦ ΦP1 . The formula

FP = ∃a0 . . . ∃a`FP1(y0, . . . , y`, a0, . . . , a`) ∧ FP2(a0, . . . , a`, z0, . . . , z`)

represents ΦP ; the variables a0, . . . , a` �connect� the two formulas in such a
way that the output of ΦP1 becomes the input of ΦP2 .

It remains the case P = while xi 6= 0 do P1 od. Let FP1 be a formula
that represents ΦP1 This is more complicated, since we have to �connect� a
formula FP1 for an unknown number of times. We will use the formula M
from Lemma III.9.

FP =∃A0∃S0 . . . ∃A`∃S`∃t(
M(y0, 0, A0, S0) ∧ · · · ∧M(y`, 0, A`, S`)∧
M(z0, t, A0, S0) ∧ · · · ∧M(z`, t, A`, S`)∧
∀τ∃v((τ ≥ t) ∨ (M(v, τ, Ai, Si) ∧ (v > 0)))∧
M(0, t, Ai, Si)∧
∀τ∃a0 . . . ∃a`∃b0 . . . ∃b`(
FP1(a0, . . . , a`, b0, . . . , b`)∧
M(a0, τ, A0, S0) ∧ · · · ∧M(a`, τ, A`, S`)∧
M(b0, τ + 1, A0, S0) ∧ · · · ∧M(b`, τ + 1, A`, S`)

∨ (τ ≥ t)
))

6For simplicity, ΦP now operates on tuples instead of functions with �nite support.
7P1 or P2 might not contain the variable x`. We pad ΦPi to a function N`+1 → N`+1

in the obvious way.
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The variable t denotes the number of times the while loop is executed. The
variables Ai and Si store values that encode the values that xi attains after
each execution of P1 in the while loop. The second line of the de�nition
of FP ensures that before the �rst execution, the value of the variable xλ
is yλ, 0 ≤ λ ≤ `. The third line ensures that after the tth execution, the
value of the variable xλ is zλ, 0 ≤ λ ≤ `. The fourth and �fth line ensure
that the �rst time that xi contains the value 0 is after the tth execution of
the while loop. The remainder of the formula ensures that the values that
x0, . . . , x` have after the (τ + 1)th execution of the while loop are precisely
the values that we get if we run P1 with x0, . . . , x` containing the values after
τth execution. Note that the formula M is satis�ed by at most one value
for �xed τ , Aλ, and Sλ. This ensure consistency, i.e, even if we Aλ and Sλ
do not contain the values from Lemma III.9, if the formula FP is satis�ed,
then the values stored in Aλ and Sλ, 0 ≤ λ ≤ `, correspond to an execution
of the WHILE program P .

Remark III.11 Furthermore, there is a WHILE program that given göd(P ),
computes the encoding of a formula presenting ϕP .

Lemma III.12 If T ∈ RE, then T ∈ REC.

Proof. Let f be a total WHILE computable functions such that im f = T .
A WHILE program P that decides T �rst checks whether a given input x ∈
im e. Let e(F ) = x. P successively computes f(0), f(1), f(2), . . . , f(i), . . .
until either e(F ) = f(i) or e(¬F ) = f(i). In the �rst case, P outputs 1,
in the second, 0. Since either F or ¬F is true, P halts on all inputs and
therefore decides T .

Theorem III.13 T /∈ RE.

Proof. Let L ∈ RE \ REC and F (y, z) be a formula that represents χ′L.
Let x = e(F ). It is easy to construct a WHILE program that given x and
an n ∈ N, computes an encoding en of the formula F (n, 1). Since

χ′L(n) = 1 ⇐⇒ F (n, 1) is true ⇐⇒ en ∈ T ,

the mapping n 7→ en is a many-one reduction from L to T .

III.3 Proof systems

What is a proof? This is a subtle question whose answer is beyond the scope
of this chapter. But here we only need two properties that without any doubt
are properties that every proof system should have: The �rst is that the set
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of all (encodings of) correct proofs should be decidable, that is, there is a
WHILE program that can check whether a given proof is true. The second
one is that there should be a total WHILE computable mapping that assigns
to each proof the formula that is proven by this proof. Technically, proofs
are �nite words over some alphabet. Thus we can view them as natural
numbers by using any �easy� injective mapping into N.

De�nition III.14 A proof system for a set L ⊆ N is a tuple (P, F ) such
that

1. P ⊆ N is decidable and

2. F : P → L is a total WHILE computable function.

We think of P of the set of (encodings of) proofs for the elements of L.
The mapping F assigns each proof p ∈ P the element of L that is proved by
p.

De�nition III.15 A proof system (P, F ) for L is complete if F is surjective.

Theorem III.16 There is no complete proof system for the set of all true
arithmetic formulas T .

Proof. Assume there would be a complete proof system (P, F ). The
mapping

f : p 7→

{
F (p) if p ∈ P
undef. otherwise

is WHILE computable. By construction im f = T and therefore T ∈ RE..
But this contradicts Theorem III.13.
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Turing machines are another model for computability. They were intro-
duced by Alan Turing in the 1930s to give a mathematical de�nition of an
algorithm. When Turing invented his machines, real computers were still
to be built. Turing machines do not directly model any real computers
or programming languages. They are abstract devices that model abstract
computational procedures. The intention of Alan Turing was to give a for-
mal de�nition of �intuitively computable�; rather than modeling computers,
he modeled mathematicians. We will see soon that Turing machines and
WHILE programs essentially compute the same functions. You can think of
a Turing machine as an extension of a �nite automaton: A �nite automa-
ton can only read symbols (and it reads every symbol only once, however,
it turns out that this is not a real restriction). A Turing machine can also
write symbols. The input is given on some �tape�, which consists of cells,
and each cell can store one symbol.

Why Turing machines?

Turing machines are the model for computations that you �nd in
the textbooks. In my opinion, WHILE programs are easier to un-
derstand; it usually takes some time to get familiar with Turing ma-
chines.

I hope that at the end of this part you will see that it does not really matter

whether one uses Turing machines or WHILE programs. All we need is a

Gödel numbering, a universal Turing machine/WHILE program, and the

ability to compute a Gödel number of the composition of two programs

from the two individual Gödel numbers, i.e. an acceptable programming

system. In theory, computer scientist are modest people.

16.1 De�nition

A Turing machine M has a �nite control and a number, say k, of tapes. The
�nite control is in one of the states from a set of states Q. Each of the tapes
consists of an in�nite number of cells and each cell can store one symbol
from a �nite alphabet Γ, the tape alphabet. (Here, �nite alphabet is just a
fancy word for �nite set.) Γ contains one distinguished symbol, the blank
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�. Each tape is two-sided in�nite.1 That is, we can formally model it as a
function T : Z → Γ and T (i) denotes the content of the ith cell. Each tape
has a head that resides on one cell. The head can be moved back and forth
on the tape, in a cell by cell manner. Only the content of the cells on which
the heads currently reside can be read by M . In one step,

1. M reads the content of the cells on which its heads reside,

2. then M may change the content of these cells.

3. M moves each head either one cell to the left, not at all, or one cell to
the right.

4. Finally, it changes its state.

The behaviour of M is described by a transition function

δ : Q× Γk → Q× Γk × {L, S,R}k.

δ can be a partial function. δ(q, γ1, . . . , γk) = (q′, γ′1, . . . , γ
′
k, r1, . . . , rk)

means that if M is in state q and reads the symbols γ1, . . . , γk on the tapes
1, . . . , k, then it will enter state q′, replace the symbol γ1 by γ′1 on the �rst
tape, γ2 by γ′2 on the second tape, etc., and move the heads as given by
r1, . . . , rk. (L stands for �left�, S for �stay�, and R for �right�. If the head
stands in position i of the tape, then �left� means that the head moves to po-
sition i−1 and �right� means that it moves to position i+1.) If δ(q, γ1, . . . , γk)
is unde�ned, then M halts. Figure 16.1 is a schematic drawing of a Turing
machine. I do not know whether it is really helpful, but every book on Turing
machines contains such a drawing.

De�nition 16.1 A k-tape Turing machineM is described by a tuple (Q,Σ,Γ, δ, q0)
where:

1. Q is a �nite set, the set of states.

2. Σ is a �nite alphabet, the input alphabet.

3. Γ is a �nite alphabet, the tape alphabet. There is a distiguished symbol
� ∈ Γ, the blank. We have Σ ⊆ Γ \ {�}.

4. δ : Q× Γk → Q× Γk × {L, S,R}k is the transition function.

5. q0 ∈ Q is the start state.

1In some textbooks, the tapes are only one-sided in�nite. As we will see soon, this
does not make any di�erence.
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Figure 16.1: A Turing machine

In the beginning, all tapes are �lled with blanks. The only exception is
the �rst tape; here the input is stored. The input of a Turing machine is a
string w ∈ Σ∗ where Σ ⊆ Γ \ {�} is the input alphabet. It is initially stored
in the cells 0, . . . , |w| − 1 of the �rst tape. All heads stand on the cell with
number 0 of the corresponding tape. The Turing machine starts in its start
state q0 and may now perform one step after another as described by the
transition function δ.

Example 16.2 Let us consider a �rst example: We will construct a 1-tape
Turing machine INC that increases a given number in binary by 1. We
assume that the head stands on the bit of lowest order and that in the end,
the head will stop there again. The lowest order bit stands on the left and the
highest order bit on the right, which is a bit unusual, but this will simplify
further constructions. What does INC do? If the lowest order bit is a 0, then
INC replaces it by a 1 and is done. If the lowest order bit is 1, then INC
replaces it by a 0. This creates a carry and INC goes one step to the right
and repeats this process until it �nds a 0 or a �. The latter case occurs if
we add 1 to a number of the form 111 . . . 1.

INC has three states add, back, and stop. The state add is the start state.
The input alphabet is Σ = {0, 1} and the tape alphabet is Γ = {0, 1,�}. The
transition function is given by the following table:
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add

1; 0, R

back
0; 1, L
�; 1, L

1; 1, L
0; 0, L

stop
�; �, R

Figure 16.2: The transition diagram of the Turing machine INC from Ex-
ample 16.2.

0 1 �
add (back, 1, L) (add, 0, R) (back, 1, L)
back (back, 0, L) (back, 1, L) (stop,�, R)
stop � � �

Above, ��� stands for unde�ned. In the state add, INC goes to the right
replacing every 1 by a 0 until it �nds the �rst 0 or �. This 0 or � is then
replaced by a 1 and INC enters the state back. In the state back, INC goes
to the left leaving the content of the cells unchanged until it �nds the �rst �.
It goes one step to the right and is done.

Instead of a table, a transition diagram is often more understandable. We
have already encountered them when we studied �nite automata. Figure 16.2
show this diagram for the Turing machine of this example. The states are
drawn as circles and an arrow from q to q′ with the label �α;β, r� means
that if the Turing machine is in state q and reads α, then it goes to state q′,
writes β, and moves its head as given by r ∈ {L, S,R}.

16.2 Con�gurations and computations

A computation of a �nite automaton is a sequence of states. The current
state of a �nite automaton completely determines its future behaviour. This
is not completely true, since the position of a state in a computation also
tells us, how many symbols of the input have been read by the automaton.
So the current state and the rest of the input tells us the future behaviour of
the automaton. We want to de�ne something similar for Turing machines.

While computing, a Turing machine can change its state, change the
positions of the heads, and the content of the tapes. The state together
with the positions of the heads and the content of the tapes is called a
con�guration. While a tape of a Turing machine is potentially in�nite, within
any �nite number of steps, the machine can visit only a �nite number of cells.
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Only these cells can contain symbols other than �. The only exeption is the
�rst tape on which the input stands in unvisited cells at the beginning. So
instead of modeling a tape as a function Z → Γ (which is the same as a
two-sided in�nite word over Γ), we just store the relevant parts of the tape,
i.e., the cells that have already been visited and�in the case of the �rst
tape�the cells were the input is written.

Formally, a con�guration C of a k-tape Turing machine is an element
(q, (p1, x1), . . . (pk, xk)) ∈ Q × (N × Γ∗)k such that 1 ≤ pκ ≤ |xκ| for all
1 ≤ κ ≤ k. q ∈ Q is the current state of M . x1, . . . , xk is the content of the
cells visited so far of the tapes 1, . . . , k. pκ denotes the position of the head
of the tape κ, 1 ≤ κ ≤ k. We store the position relatively, i.e., pκ denotes
the position within xκ but not necessarily the absolute position on the tape.

The start con�guration ofM = (Q,Σ,Γ, δ, q0) with input w is the con�g-
uration (q0, (1, w), (1,�), . . . , (1,�)). The input w stands on the �rst tape
and the head is on the �rst symbol of it. On all other tapes, only one cell has
been visited so far (the one the head is residing on), and this cell necessarily
contains a �. We usually denote the start con�guration by SCM (w).

Let C = (q, (p1, x1), . . . (pk, xk)) and C ′ = (q′, (p′1, x
′
1), . . . (p′k, x

′
k)) be

two con�gurations and let xκ = uκακvκ with |uκ| = pκ − 1 and ακ ∈ Γ for
1 ≤ κ ≤ k. In other words, ακ is the symbol of the cell the head is residing
on. Then C ′ is called a successor of C if C ′ is reached from C by one step of
M . Formally this means that if δ(q, α1, . . . , αk) = (q′, β1, . . . , βk, r1, . . . , rk),
then we have for all 1 ≤ κ ≤ k,

x′κ = uκβκvκ

and

p′κ =


pκ − 1 if rκ = L,

pκ if rκ = S,

pκ + 1 if rκ = R,

unless pκ = 1 and rκ = L or pκ = |xκ| and rκ = R. In the latter two cases,
M is visiting a new cell. In these cases, we have to extend xκ by one symbol.
If pκ = 1 and rκ = L, then

x′κ = �βκvκ

and

p′κ = 1.

If pκ = |xκ| and rκ = R, then

x′κ = uκβκ�

and

p′κ = |xκ|+ 1.
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We denote the fact that C ′ is a successor of C by C `M C ′. Note that by
construction, each con�guration has at most one successor. We denote the
re�exive and transitive closure of the relation `M by `∗M , i.e., C `∗M C ′ i�
there are con�gurations C1, . . . , C` for some ` such that C `M C1 `M . . . `M
C` `M C ′. If M is clear from the context, we will often omit the subscript
M .

A con�guration that has no successor is called a halting con�guration.
A Turing machine M halts on input w i� SCM (w) `∗M Ct for some halting
con�guration Ct. (Note again that if it exists, then Ct is unique.) Otherwise
M does not halt on w. If M halts on w and Ct is a halting con�guration,
we call a sequence SCM (w) `M C1 `M C2 `M . . . `M Ct a computation of
M on w. If M does not halt on w, then the corresponding computation is
in�nite.

Assume that SCM (w) `∗M Ct and Ct = (q, (p1, x1), . . . , (pk, xk)) is a
halting con�guration. Let i ≤ p1 be the largest index such that x1(i) = �.
If such an index does not exist, we set i = 0. In the same way, let j ≥ p1 be
the smallest index such that x1(j) = �. If such an index does not exist, then
j = |x1|+ 1. Let y = x1(i+ 1)x1(i+ 2) . . . x1(j− 1). In other words, y is the
word that the head of tape 1 is standing on. y is called the output of M on
w. (This choice is fairly arbitrary, you can �nd other de�nitions in various
text books, but they are all equivalent. For instance, you could think of an
extra output tape, that is write-only and the Turing machine has to print
its output there.)

16.3 Functions and languages

A Turing machine M = (Q,Σ,Γ, δ, q0) computes a (partial) function ϕM :
Σ∗ → (Γ \ {�})∗ de�ned by

ϕM (w) =

{
the output of M on w if M halts on w,

unde�ned otherwise.

De�nition 16.3 A function f : Σ∗ → Σ∗ is Turing computable, if f = ϕM
for some Turing machine M = (Q,Σ,Γ, δ, q0).

We also want to de�ne decidable languages. We could call a language
L ⊆ Σ∗ decidable if its characteristic function Σ∗ → {0, 1} is Turing com-
putable. But this has the problem that 0 or 1 might not be elements of
Σ. So we either have to put 0 and 1 into Σ or we have to identify two
symbols of Σ with 0 and 1. While this works, there is a more elegant way:
Like we did for �nite automata, we will partition the states into accept-
ing and rejecting states. A Turing machine is now described by a 6-tuple
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(Q,Σ,Γ, δ, q0, Qacc).
2 Qacc ⊆ Q is called the set of accepting states. A halt-

ing con�guration (q, (p1, x1), . . . , (pk, xk)) is called an accepting con�guration
if q ∈ Qacc. Otherwise it is called a rejecting con�guration.

De�nition 16.4 Let L ⊆ Σ∗ be a language.

1. A Turing machineM = (Q,Σ,Γ, δ, q0, Qacc) recognizes a language L ⊆
Σ∗, if for all w ∈ L, the computation of M on w ends in an accepting
con�guration and for all w /∈ L, the computation does not end in an
accepting con�guration (i.e., it either ends in a rejecting con�guration
or M does not halt on w).

2. M decides L, if in addition, M halts on all w /∈ L.

3. If M is a Turing machine then we denote by L(M) the language rec-
ognized by M .

Does the alphabet matter?

For WHILE programs, languages are always a subset of N. For
Turing machines, languages are subsets of Σ∗ and the alphabet Σ
may vary. From an esthetic point of view, this might be unpleasant.
However, we can always restrict ourselves to the alphabet {0, 1} by
using a �xed length encoding of the symbols of Σ by binary strings.

2So if we want to compute a function, a 5-tuple is su�cient to describe the Turing
machine. If we want to decide or recognize languages, then we take a 6-tuple. We could
also always take a 6-tuple and simply ignore the accepting states if we compute functions.
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17 Examples, tricks, and

syntactic sugar

Understanding a Turing machines is like learning to code. In the beginning,
even writing a function consisting of ten lines of code is hard. Once you got
experienced, it is su�cient to specify the overall structure of your program
and then �lling the functions with code is an easy tasks. The same is true
for Turing machines; though we will not �ll in the technical details after
specifying the overall structure since we do not want to sell Turing machines.

In the beginning, however, we will do low level descriptions of Turing
machines, that is, we will write down the transition functions explicitly.

17.1 More Turing machines

Here are some example Turing machines that do some simple tasks. We will
need them later on.

The Turing machine ERASE in Figure 17.1 erases the cells to the right
of the head until the �rst blank is found.

The machine COPY in Figure 17.2 is a two-tape Turing machine. Itcopies
the content of the �rst tape to the second tape provided that the second tape
is empty. This is done in the state copy. Once the �rst blank on the �rst
tape is reached, the copy process is �nished and the Turing machine moves
the heads back to the left-most symbol.

Figure 17.3 shows the Turing machine COMPARE. In the state zero?,
it moves its head to the right until either a 1 or a � is found. In the �rst
case, the content is not zero. In the second case, the content is zero. In both
states backn and backy, we go back to the left until we �nd the �rst blank.
We use two di�erent states for the same thing since we also have to store in

erase

1; �, R
0; �, R

stop
�; �, S

Figure 17.1: The Turing machine ERASE
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copy

1; 1, R �; 1, R
0; 0, R �; 0, R

back

0; 0, L 0; 0, L
0; 0, L 1; 1, L
1; 1, L 0; 0, L
1; 1, L 1; 1, L

�; �, L | �; �, L
stop

�; �, R | �; �, R

Figure 17.2: The Turing machine COPY

the state whether the content is zero or not. The Turing machine stops in
the state yes or no.

Exercise 17.1 Construct a Turing machine DEC that decreases the content
of the tape by 1 if the content is > 0.

17.2 Some techniques and tricks

17.2.1 Concatenation

Although Turing machines are very unstructured objects per se, it is quite
useful to think about them in a structured way. For instance, assume we
want to test whether the content of the tapes represents some string in
binary that is either zero or one. We �rst run the Turing machine DEC
of Exercise 17.1. After that the content of the tape has been decreased, it
is zero if and only if it was zero or one before. Thus we can now run the
Turing machine COMPARE. This new �concatenated� Turing machine can
easily be constructed from DEC and COMPARE: First rename the states
of COMPARE, then make a new Turing machine by throwing the states
of both together. On the states of DEC, the Turing machine behaves like
DEC, with one exception: Whenever DEC wants to enter stop, it enters
the starting state of COMPARE instead. On the states of COMPARE, the
Turing machine behaves like COMPARE. Figures 17.4 shows a schematic
drawing that we will use in the following.

17.2.2 Loops

If you concatenate Turing machines �with themselves�, you get loops. For
instance, if you want to have a counter on some tape that is decreased by
one until zero is reached, we can easily achieve this by concatenating the
machines DEC and COMPARE as depicted in Figure 17.5.
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zero?

0; 0, R backn

1;
1,
L

1; 1, L
0; 0, L

no
�; �, R

backy

�; �, L

1; 1, L
0; 0, L

yes
�; �, R

Figure 17.3: The Turing machine COMPARE

COMPAREDEC
stop

yes

no

Figure 17.4: The concatenated Turing machine. The triangle to the left of
DEC indicates that the starting state of DEC is the starting state of the
new Turing machine. The arrow labeled with stop means that whenever
DEC wants to enter the state stop of DEC, it enters the starting state of
COMPARE instead. The lines labeled with yes and no mean that yes and
no are the two halting states of COMPARE. Note that this concatenation
works well in particular because the Turing machines move the head back to
the �rst cell of the tape.
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COMPAREDEC
stop

yes

no

Figure 17.5: The counting Turing machine. DEC is executed; after this, the
content of the tape is compared with zero. If the state no is entered, the
machine enters again the starting state of DEC and decrease the content
again. If the content of the tape is zero, then the Turing machine stops in
the state yes.

17.2.3 Marking of cells

All the machines INC, COPY, COMPARE go back to the left end of the
string on the tape. They can �nd this end because it is marked by a �.
What if a Turing machine wants to �nd a position somewhere in the middle
of the string. In this case, it can �leave a marker� there. For this, we enlarge
the tape alphabet and add for each γ ∈ Γ a new symbol γ̄. The Turing
machine can replace the current symbol γ by the symbol γ̄ and move its
head somewhere else. It can �nd this position by going back and scanning
for a symbol that is not in the original alphabet Γ. It then replaces this
symbol γ̄ by γ and continues its computation. (Leaving more than one
marker in this way per tape could mean trouble!)

17.2.4 Storing information in the state

Have another look at the Turing machine COMPARE. After it reached the
�rst 1 or the �rst � it has to go back to the beginning of the string. In
both cases, COMPARE has to do the same thing: going back! But it has
to remember whether it found a 1 or a �. Therefore, we need two states for
going back, backn and backy. One usually says that �the Turing machine
goes back and stores in its state whether it found a 1 or a ��. If there is
more to store, say an element from a set S, then it is more convenient to
take the cartesian product {q} × S as states. In our example, we could e.g.
also have used the elements from {back} × {1,�} as states.

17.2.5 Parallel execution

Let M = (Q,Σ,Γ, δ, q0) and M ′ = (Q′,Σ,Γ, δ′, q′0) be two Turing machines
with k and k′ tapes. We can construct a Turing machine N with k+k′ tapes
which simulates M and M ′ in parallel as follows: N has states Q ×Q′ and
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starting state (q0, q
′
0). The transition function of N ,

∆ : (Q×Q′)× Γk+k′ → (Q×Q′)× Γk+k′ × {L, S,R}k+k′ ,

is de�ned by

∆((q, q′), γ1, . . . , γk+k′) = ((p, p′), α1, . . . , αk, α
′
1, . . . , α

′
k′ , r1, . . . , rk, r

′
1, . . . , r

′
k′)

if

δ(q, γ1, . . . , γk) = (p, α1, . . . , αk, r1, . . . , rk) and

δ′(q′, γ′k+1, . . . , γ
′
k+k′) = (p′, α′1, . . . , α

′
k′ , r

′
1, . . . , r

′
k′)

are both de�ned. If only one is de�ned, say δ(q, γ1, . . . , γk), then

∆((q, q′), γ1, . . . , γk+k′) = ((p, q′), α1, . . . , αk, γk+1, . . . , γk+k′ , r1, . . . , rk, S, . . . , S)

The other case is de�ned symmetrically. If both are unde�ned, then ∆((q, q′), γ1, . . . , γk+k′)
is unde�ned, too. On the �rst k tapes, N behaves like M , on the other k′

tapes, N behaves like M ′. If one machine stops, then N does not move its
head on the corresponding tapes anymore and just writes the symbols that
it reads all the time. If the second machine stops, too, then N stops. (Of
course, since N gets its input on the �rst tape,M ′ is simulated on the empty
tape. If we want to simulate M and M ′ on the same input, then we have to
copy the input from the �rst tape to the (k + 1)th tape, using for instance
COPY, before N starts with the simulation).

Here is one application: takeM to be any machine andM ′ is the machine
from Figure 17.5. Modify the function ∆ such thatM ′ is simulated normally,
butM only executes a step whenM ′ changes it state from the state no to its
start state. In this way, M executes as many steps as given by the counter
in the beginning. We will need this construction later on.

17.3 Syntactic sugar

For more complex Turing machines, describing them by transition diagrams
is a boring task. So after some training, we will go on by describing Turing
machines by sentences in natural language. Whenever you formulate such a
sentence, you should carefully think how a Turing machine actually would
do the thing that you are describing. Here is a description of the machine
INC:
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Input: x ∈ {0, 1}∗, viewed as a number in binary.
Output: x increased by 1

1. Go to the right and replace every 1 by a 0 until you reach the
�rst 0 or �.

2. Write a 1 and go back to the right to the beginning of the string.

Once we got even more experienced with Turing machines, we could even
write:

Input: x ∈ {0, 1}∗, viewed as a number in binary.
Output: x increased by 1

1. Increase the content of the tape by 1.

Warning!!! Although the example above suggests it, the sentence
�The Turing machine produces the desired ouput� is in general not an ad-
equate description of a Turing machine. Above, it is, because the Turing
machine INC does such a simple job. More complex jobs, require more de-
tailed descriptions.

If in doubt . . .

. . . whether your description of a Turing machine is o.k. always ask
yourself the following question: Given the description, can I write a
C program that gets k char* as input and does the same.

(JAVA is also �ne.)

17.4 Further exercises

Exercise 17.2 Instead of a two-sided in�nite tape, you can also �nd Turing
machines with a one-sided in�nite tape in the literature. Such a tape can be
modelled by a function T : N → Γ. There is a distinguished symbol & that
marks the end of each tape. Initially, every tape is �lled with blanks except
the 0th cell, which is �lled with a &. The �rst tape contains the input x in
the cells 1, 2, . . . , |x|. Every Turing machine with one-sided in�nite tapes has
to obey the following rules: If it does not read a &, it cannot write & on this
tape. If it reads a &, it has to write a & on this tape and must not move its

© Markus Bläser 2007�2021



17.4. Further exercises 153

head to the left on this tape. In this way, it can never leave the tape to the
left.

Show that every Turing machine with two-sided in�nite tapes can be sim-
ulated by a Turing machine with one-sided in�nite tapes. Try not to increase
the number of tapes!

Exercise 17.3 Consider the following language

COPY = {w#w | w ∈ {0, 1}∗}

over the alphabet {0, 1,#}.

1. Modify the COPY machine such that it recognizes the language COPY.
Although we did not de�ne running time for Turing machines so far,
how many steps does the Turing machine do on inputs of length m =
2n+ 1?

2. Can you recognize COPY with a one-tape Turing machine? How many
steps does the Turing machine do on inputs of length m?
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18 Church�Turing thesis

18.1 WHILE versus Turing computability

In this chapter, we want to show that

WHILE computable
equals

Turing computable.

But there is of course a problem. WHILE programs compute functions
Ns → N whereas Turing machines compute functions Σ∗ → Σ∗. To make
things a little easier, we can restrict ourselves to functions N→ N, since we
can use a pairing function. For Turing machines, we use the input alphabet
Σ = {0, 1}.

18.1.1 N versus {0, 1}∗

We have to identify natural numbers with words over {0, 1} and vice versa.
For y ∈ N, let bin(y) ∈ {0, 1}∗ denote the binary expansion of y without
any leading zeros. (In particular, 0 ∈ N is represented by the empty word ε
and not by 0.) The function bin : N→ {0, 1}∗ is an injective mapping�two
di�erent numbers have di�erent binary expansions�but it is not surjective,
since we do not cover strings with leading zeros. Not bad and this would
work, but for esthetic reasons, we want to have a bijection between N and
{0, 1}∗. Consider the following mapping {0, 1}∗ → N: Append a 1 to a given
x ∈ {0, 1}∗. This is an injective mapping from {0, 1}∗ to the subset of all
binary expansions without leading zeros of some natural number. Since we
do not have leading zeros, the function that maps such a binary expansion
to the corresponding natural number is also injective. The combination of
both gives an injective mapping {0, 1}∗ → N. It is also surjective? No, the
smallest number that we get in the image is 1, by appending 1 to the empty
word ε. So here is the next attempt:

1. Append a 1 to the word x ∈ {0, 1}∗.

2. View this string 1x as some binary expansion. Let n be the corre-
sponding number, i.e, bin(n) = 1x.

3. Subtract 1 from n.
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18.1. WHILE versus Turing computability 155

We call the mapping {0, 1}∗ → N that we get this way cod. More compactly,
we can write cod(x) = bin−1(1x)− 1. (Note that we can write bin−1, since
1x is in the image of bin.)

Exercise 18.1 Show that cod is indeed bijective.

18.1.2 N→ N versus {0, 1}∗ → {0, 1}∗

Now, if f : N → N is a function, then f̂ : {0, 1}∗ → {0, 1}∗ is de�ned as
follows:

f̂(x) = cod−1(f(cod(x))) for all x ∈ {0, 1}∗.
Or, in other words, the following diagram commutes:

N
f→ N

↓ cod−1 ↓ cod−1

{0, 1}∗ f̂→ {0, 1}∗

Conversely, if g : {0, 1}∗ → {0, 1}∗, then ĝ : N→ N is de�ned by

ĝ(n) = cod(g(cod−1(n)) for all n ∈ N.

In other words,

{0, 1}∗ g→ {0, 1}∗
↓ cod ↓ cod

N
ĝ→ N

Exercise 18.2 Show the following: For every f : N → N and g : {0, 1}∗ →
{0, 1}∗, ˆ̂

f = f and ˆ̂g = g. (� .̂ is self-inverse.�)

Remark 18.1 The mapping cod is not too natural. For instance, with f :
N→ N, we could associate the mapping bin(x) 7→ bin(f(x)). But if cod is a
bijection, then we have the nice property that .̂ is self-inverse.

Exercise 18.3 Show that cod and cod−1 are functions that are easy to com-
pute. In particular:

1. Write a WHILE program that, given an n ∈ N, computes the symbols
of cod−1(n) and stores them in an array.

2. Construct1 a Turing machine that given x ∈ {0, 1}∗, writes cod(x)
many 1's on the �rst tape.

So the only reason why a WHILE program or Turing machine cannot compute
cod or cod−1 is that they cannot directly store elements from {0, 1}∗ or N,
respectively.

1This is quite funny. While both WHILE programs and Turing machines are mathe-
matical objects, we write WHILE programs but construct Turing machines.
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18.1.3 Pairing functions

We also need a pairing function for {0, 1}∗, i.e., an injective mapping [., .] :
{0, 1}∗×{0, 1}∗ → {0, 1}∗. If we take our pairing function 〈., .〉 : N×N→ N,
then of course,

(x, y) 7→ cod−1(〈cod(x), cod(y)〉)

is a bijection {0, 1}∗ × {0, 1}∗ → {0, 1}∗.
But there are nicer ways of de�ning a pairing function for {0, 1}∗. The

easiest way would be to concatenate the strings x and y. But then we do
not know where x ends and y starts. We could use some special symbol #
and write it between x and y, but then we would have to enlarge the input
alphabet (which is not a tragedy, but we do not want to do it here). There
is another way: Let β(x) = x10x20 . . . x|x|0, i.e, we insert a 0 after every
symbol of x. From β(x)11y, we can get x and y back, since the �rst pair
11 marks the end of β(x). The length of this encoding is 2|x|+ |y|+ 2. We
can get a shorter one by mapping (x, y) to β(bin(|x|))11xy. By scanning for
the �rst pair 11, we can divide the string into β(bin(|x|)) and xy. From the
�rst, we can reconstruct |x|. Once we know this, we can get x and y from x.
The length of this encoding is ≤ |x|+ |y|+ 2 log |x|+ 2.

Exercise 18.4 Try to get even shorter encodings in this way. What is the
shortest that you can get?

18.2 GOTO programs

It turns out that it is useful to introduce some intermediate concept, GOTO
programs. GOTO programs have variables and the same simple statements
as WHILE programs but instead of a while loop, there is a goto statement.
Furthermore, all the lines are numbered.

Formally, a GOTO program is a sequence (1, s1), (2, s2), . . . , (m, sm) where
each sµ is a statement of the form

1. xi = xj + xk or

2. xi = xj − xk or

3. xi := c or

4. if xi 6= 0 then goto λ

The semantics of the �rst three statements is the same as for WHILE
programs. After the µth statement is executed, the program goes on with
the (µ+1)th statement. The only execption is the conditional jump if xi 6= 0
then goto λ. If the content of xi is zero, then we go on with the (µ+ 1)th
statement, otherwise, we go on with statement λ. If we ever reach a line that
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does not exist�either by jumping to a nonexisting line or by executing the
last statement sm and going to line m+ 1�the program stops. The content
of x0 is the value computed by the program. As for WHILE programs, the
input is stored in the �rst s variables. The function Ns → N computed by a
GOTO program P is denoted by�surprise�ϕP .

Exercise 18.5 Show how to simulate an unconditional jump in GOTO.
(An unconditional jump, we denote it by goto λ, always jumps to line λ no
matter what.)

Exercise 18.6 Give a precise mathematical formulation of the semantics of
GOTO programs. A state should consist of a natural number, which stores the
current line to be executed, and a tuple/sequence with �nite support of natural
numbers, which stores the content of the variables. Construct a function ΦP

that maps a state (i, V ) to the state that is reached after executing line i.

Every while loop can be simulated by a goto statement. If should be
fairly obvious that

while xi 6= 0 do
P

od

is simulated by

1: if xi 6= 0 then goto 3
2: goto 5
3: P
4: goto 1
5: . . .

The use of the labels is a little bit sloppy. The program P in general has more
than one line, so the label of the statement goto 1 is usually larger. Further-
more, we do not write tuples but lines and separate labels and statements
by �:�. We get the following theorem.

Lemma 18.2 For every WHILE program P there is a GOTO program Q
with ϕP = ϕQ.

18.3 Turing machines can simulate GOTO programs

Lemma 18.3 Let f : N → N. If f is GOTO computable, then f̂ is Turing
computable.

Proof. Assume that f is GOTO computable. Let P = (1, s1), . . . , (m, sm)
be a GOTO program computing f . It is fairly easy to see we can restrict
the simple statements of GOTO programs to xi++, xi−−, and xi := 0.
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Assume that P uses variables x0, . . . , x`. Our Turing machine uses `+ 1
tapes. Each tape stores the content of one of the registers in binary. The
input for the Turing machine is cod−1(n). For the simulation, it is easier to
have bin(n) on the tape. We get it by appending a 1 to cod−1(n) and then
subtracting 1 by using the Turing machine DEC.

We will use the Turing machines INC, DEC, ERASE, and COMPARE
(see Section 17) to construct a Turing machine M that simulates P , more
precisely, computes f̂ .

For each instruction (µ, sµ), we have a state qµ. The invariant of the
simulation will be that whenever the Turing machine is in one of these states,
the content of the tapes correspond to the content of the registers before
executing the instruction sµ and all heads stand on the left-most symbol
that is not a blank. (The lowest order bit is standing on the left.)

Figure 18.1 shows an example of the construction for the program

1: ifx0 6= 0 then goto 3
2: x0++
3: . . .

The arrow from the state q0 to the box with the label COMPARE means
that in q0,M does nothing (i.e., writes the symbol that it reads and does not
move its head) and enters the starting state of the machine COMPARE. The
two arrows leaving this box with the labels yes and no mean that from the
states yes and no of COMPARE, we go to the states q3 and q2,respectively.
The Turing machine COMPARE is only a 1-tape Turing machine. It can be
easily extended it to an (` + 1)-tape machine that only works on the tape
corresponding to x0. The same has to be done for the machine INC and
so on. From the example it should be clear how the general construction
works. For each instruction sµ, M goes from qµ to a copy of one of the
Turing machines that simulates the instruction xi++, xi−−, xi := 0 or if
xi 6= 0 then goto λ. From the halting state(s) of these machines, M then
goes to qµ+1, the only exception being the conditional jump.

It should be clear from the construction that the simulation is correct. To
formally prove the correctness, it is su�cient to show the following statement:

Claim. Assume that P is in state (µ, V ) and that ΦP (µ, V ) = (µ′, V ′). If
M is in state qµ, the content of the tapes are bin(V (λ)), 0 ≤ λ ≤ `, and
the heads are standing on the lowest order bits of bin(V (λ)), then the next
state from q1, . . . , qm thatM will enter will be qµ′ . At this point, the content
of the tapes are bin(V ′(λ)), 1 ≤ λ ≤ `, and the heads are standing on the
lowest order bits of bin(V (λ)).

From this claim, the correctness of the simulation follows immediately.
When M stops, we have to transform the binary expansion b = bin(n) on
tape 1 back into cod−1(n), which is easy.

Exercise 18.7 Give a detailed description of the general construction.
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COMPARE

INC

q3

q2

q1

stop

no

yes

Figure 18.1: The simulating Turing machine for the example GOTO pro-
gram.

Exercise 18.8 Prove the claim in the proof of Lemma 18.3

18.4 WHILE programs can simulate Turing machines

Lemma 18.4 Let g : {0, 1}∗ → {0, 1}∗. If g is Turing computable, then ĝ
is WHILE computable.

Proof. Let M = (Q, {0, 1},Γ, δ, q0) be a k-tape Turing machine that
computes g. By renaming states, we can assume that Q = {1, 2, . . . , q}. We
represent the symbols of Γ by the numbers 0, 1, . . . , s− 1. By Exercise 17.2,
we can assume that each tape is onesided in�nite.

The content of each tape κ is stored in an array Aκ. Aκ[i] = j means
that the cell i contains the symbol that corresponds to j. Of course, Aκ
always stores only a �nite amount of data. Recall that the arrays that we
created in WHILE can be made dynamic (Exercise ??), so we can extend
them whenever M visits a new cell. The variable pκ contains the (absolute)
position of the head.

In the beginning, we have to write cod−1(x0) into A1. We can do this
using the Turing machine constructed in Exercise 18.3.

The domain of δ is �nite, thus we can hardwire the table of δ into our
WHILE program. Then it is easy to simulate one step of M , we just have to
update the corresponding cells of the array and adjust p1, . . . , pk and change
the state. The simulation of one such step is embedded into a while loop of
the form

while δ(q, a1, . . . , ak) is de�ned do . . . od
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From the construction, it is clear that the simulation is correct.

From the proof above, we also get an new proof of the Kleene normal
form for WHILE programs:

Alternative proof of Corollary 11.3. We convert a WHILE program into
an equivalent GOTO program, then into an equivalent Turing machine, and
�nally back into an equivalent WHILE program. This WHILE program has
only one while loop. All the other things, like simulating an array etc. can
be done by FOR programs.

18.5 Church�Turing thesis

From Lemmas 18.2, 18.3, and 18.4, we get the following result.

Theorem 18.5 Let f : N → N. Then the following three statements are
equivalent:

1. f is WHILE computable.

2. f is GOTO computable.

3. f̂ is Turing computable.

The Church�Turing thesis states that any notion of �intuitively com-
putable� is equivalent to Turing computable (or WHILE computable, . . . ).
The theorem above is one justi�cation of the Church�Turing thesis. The
Church�Turing thesis is not a statement that you could prove. It is a state-
ment about the physical world we are living in. You can either accept the
Church�Turing thesis or reject it. So far, the Church�Turing thesis seems to
hold and it is widely accepted among computer scientists. Even a quantum
computer would not change this. Quantum computers cannot compute more
than Turing machines. Maybe they can do it faster, but this is another story.
But who knows, maybe some day a brilliant (crazy?) physicist will come up
with a device that decides the halting problem.
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IV Primitive and µ-recursion

Historically, primitive recursive functions and µ-recursive functions are one
of the �rst concepts to capture �computability�.

IV.1 Primitive recursion

We are considering functions Ns → N for any s ≥ 1.

De�nition IV.1 The set of all primitive recursive functions is de�ned in-
ductively as follows:

1. Every constant function is primitive recursive.

2. Every projection psi : Ns → N (mapping (a1, . . . , as) to ai) is primitive
recursive.

3. The successor function suc : N → N de�ned by suc(n) = n + 1 is
primitive recursive.

4. If f : Ns → N and gi : Nt → N, 1 ≤ i ≤ s, are primitive recursive, then
their composition de�ned by

(a1, . . . , at) 7→ f(g1(a1, . . . , at), . . . , gs(a1, . . . , at))

is primitive recursive.

5. If g : Ns → N and h : Ns+2 → N are primitive recursive, then the
function f : Ns+1 → N de�ned by

f(0, a1, . . . , as) = g(a1, . . . , as)

f(n+ 1, a1, . . . , as) = h(f(n, a1, . . . , as), n, a1, . . . , as)

is primitive recursive. This scheme is called primitive recursion.

We want to show that primitive recursive functions are the same as FOR
computable functions. Therefore, we �rst look at some fundamental func-
tions that appear in FOR programs:

Example IV.2 The function add(x, y) = x + y is primitive recursive. We
have

add(0, y) = y,

add(x+ 1, y) = suc(add(x, y)).
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162 IV. Primitive and µ-recursion

Above, we did not write down the projections explicitly. The correct de�nition
looks like this:

add(0, y) = p1
1(y),

add(x+ 1, y) = suc(p3
1(add(x, y), x, y)).

Since this looks somewhat confusing, we will omit the projections in the fol-
lowing.

Exercise IV.1 Show that the function mult(x, y) = xy is primitive recur-
sive.

Example IV.3 The predecessor function de�ned by

pred(n) =

{
n− 1 if n > 0

0 otherwise

is primitive recursive. We have

pred(0) = 0,

pred(n+ 1) = n.

This is a primitive recursion scheme.

Exercise IV.2 Prove that the modi�ed di�erence sub(x, y) = max{x−y, 0}
is primitive recursive.

IV.1.1 Bounded maximization

Finally, we will show that the pairing function 〈., .〉 and �its inverses� π1 and
π2 are primitive recursive. Recall that 〈x, y〉 = 1

2(x+y)(x+y+1)+y. From

1

2
n(n+ 1) =

1

2
(n− 1)n+ n

we get a primitive recursion scheme for 1
2n(n+1) and from this function, we

can easily get 〈x, y〉.
For the inverse functions, we need bounded maximization: Let P be a

predicate on N and view P as a function P : N→ {0, 1}. Assume that P (as
a function) is primitive recursive. We claim that

bounded-max -P (n) := max{x ≤ n | P (x) = 1}

is primitive recursive. (If no such x exists, i.e., the maximum is unde�ned,
we set bounded-max -P (n) = 0.) This can be seen as follows:

bounded-max -P (0) = 0

bounded-max -P (n+ 1) =

{
n+ 1 if P (n+ 1) = 1

bounded-max -P (n) otherwise

= (1− P (n+ 1)) · bounded-max -P (n) + P (n+ 1) · (n+ 1).
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In the same way, we can see that the bounded existential quanti�er de�ned
by

bounded-∃-P (n) :=

{
1 if there is an x ≤ n with P (x) = 1

0 otherwise

is primitive recursive:

bounded-∃-P (0) = P (0)

bounded-∃-P (n+ 1) = P (n+ 1) + bounded-∃-P (n)(1− P (n+ 1))

Above, P has only one argument. It is easy to see that for a predicate
with s arguments,

bounded-maxi -P (x1, . . . , xs) := max{x ≤ xi | P (x1, . . . , xi−1, x, xi+1, . . . , xs) = 1}

is primitive recursive. In the same way, we can de�ne bounded-∃i-P and
show that it is primitive recursive.

With these quanti�ers, we can easily invert the pairing function. Let
Q(x, y, z) be the predicate �〈x, y〉 = z�. It is not too hard to see that this
predicate is primitive recursive. Now we de�ne:

π′1(x′, y′, z′) := max{x ≤ x′ | ∃y ≤ y′ : 〈x, y〉 = z′}
= max{x ≤ x′ | bounded-∃2-Q(x, y′, z′)}
= bounded-max1 -bounded-∃2-Q(x′, y′, z′).

Above, we use the fact, that 〈., .〉 is a bijection, that is, given x and z, there
is exactly one y with 〈x, y〉 = z. The same holds when y and z is given. Now
we can write:

π1(z) = π′1(z, z, z),

where we use the fact that x, y ≤ 〈x, y〉 for all x, y. In the same way, we can
prove that the projection π2 is injective.

It immediately follows that also forming larger �pairs� 〈a1, . . . , as〉 and
the corresponding inverse functions π1, . . . , πs are primitive recursive.

IV.1.2 Simultaneous primitive recursion

Let gi : Ns → N and hi : Ns+t+1 → N, 1 ≤ i ≤ t, be primitive recursive. The
functions fi : Ns+1 → N, 1 ≤ i ≤ t, de�ned by the simultaneous primitive
recursion scheme

fi(0, a1, . . . , as) = gi(a1, . . . , as),

fi(n+ 1, a1, . . . , as) = hi(f1(n, a1, . . . , as), . . . , ft(n, a1, . . . , as), n, a1, . . . , as),
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for i = 1, . . . , t, are primitive recursive. To see this, de�ne f by

f(0, a) = 〈g1(π1(a), . . . , πs(a)), . . . , gt(π1(a), . . . , πs(a))〉
f(n+ 1, a) = 〈h1(π1(f(n, π1(a), . . . , πs(a))), . . . ,

πt(f(n, π1(a), . . . , πs(a))), n, π1(a), . . . , πs(a)), . . .

ht(π1(f(n, π1(a), . . . , πs(a))), . . . ,

πt(f(n, π1(a), . . . , πs(a))), n, π1(a), . . . , πs(a))〉.

f is primitive recursive. By an easy induction on n, we can show that

πi(f(n, a)) = fi(n, π1(a), . . . , πs(a)).

We can rewrite this as

fi(n, a1, . . . , as) = πi(f(n, 〈a1, . . . , as〉)).

Thus each fi is primitive recursive.

IV.1.3 Primitive recursion versus for loops

The next lemma shows that for all FOR programs, there are primitive re-
cursive functions that compute the values of the variables after executing
P .

Lemma IV.4 Let P be a FOR program with s inputs. Let ` be the largest in-
dex of a variable in P . Then there are primitive recursive functions v0, . . . , v` :
N`+1 → N such that

(v0(a0, . . . , a`), . . . , v`(a0, . . . , a`)) = ΦP (a0, . . . , a`)

for all a0, . . . , a` ∈ N.

Proof. The proof is by structural induction.
Induction base: If P is xi := xj + xk then each vλ is the projection on the
λth component, except for vi, which is xj + xk. Since modi�ed subtraction
and constant functions are primitive recursive, too, we can cover the cases
xi := xj − xk and xi := c in the same way.
Induction step: If P = [P1;P2], then by the induction hypothesis, there are
primitive recursive functions vi,0, . . . , vi,`, i = 1, 2, such that

(vi,0(a0, . . . , a`), . . . , vi,`(a0, . . . , a`)) = ΦPi(a0, . . . , a`), i = 1, 2.

Since ΦP = ΦP2 ◦ ΦP1 , we get that

vλ(a0, . . . , a`) = v2,λ(v1,0(a0, . . . , a`), . . . , v1,`(a0, . . . , a`))

for all 0 ≤ λ ≤ ` and a0, . . . , a` ∈ N. Thus v0, . . . , v` are primitive recursive.
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If P = for xi do P1 od, then by the induction hypothesis, there are
functions v1,0, . . . , v1,` such that

(v1,0(a0, . . . , a`), . . . , v1,`(a0, . . . , a`)) = ΦP1(a0, . . . , a`). (IV.1)

De�ne u0, . . . , u` by

uλ(0, a0, . . . , a`) = aλ

uλ(n+ 1, a0, . . . , a`) = v1,λ(u0(n, a0, . . . , a`), . . . , u`(n, a0, . . . , a`))

for 0 ≤ λ ≤ `. This is a simultaneous primitive recursion scheme. We claim
that

(u0(n, a0, . . . , a`), . . . , u`(n, a0, . . . , a`)) = Φ
(n)
P1

(a0, . . . , a`) (IV.2)

for all n, a0, . . . , a` ∈ N. This claim is shown by induction on n.
Induction base: The case n = 0 is clear, since both sides are (a0, . . . , a`) in
this case.
Induction step: We have

uλ(n+ 1, a0, . . . , a`) = v1,λ(u0(n, a0, . . . , a`), . . . , u`(n, a1, . . . , a`))

= v1,λ(Φ
(n)
P1

(a0, . . . , a`))

= λth entry of Φ
(n+1)
P1

(a0, . . . , a`).

The last equality follows from the induction hypothesis (IV.1).
Altogether, this shows (IV.2). We get vλ by vλ(a0, . . . , an) = uλ(ai, a0, . . . , an).

Lemma IV.5 For every primitive recursive function f , there is a FOR pro-
gram P with ϕP = f .

Proof. This proof is again by structural induction.
Induction base: Constant functions, projections, and the successor function
are all FOR computable.
Induction step: If f is the composition of h and g1, . . . , gs, then by the induc-
tion hypothesis, there are FOR programs P and Q1, . . . , Qs that compute h
and g1, . . . , gs. From this, we easily get a program that computes f .

If f is de�ned by

f(0, a1, . . . , as) = g(a1, . . . , as),

f(n+ 1, a1, . . . , as) = h(f(n, a1, . . . , as), n, a1, . . . , as),

then there are programs P and Q that compute h and g, respectively. Now
the following program computes f(a0, a1, . . . , as):
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1: x0 := g(a1, . . . , as);
2: for a0 do
3: x0 := h(x0, a0, a1, . . . , as)
4: od

We saw how to simulate function calls of FOR computable functions.

Theorem IV.6 A function f is primitive recursive i� it is FOR computable.

Proof. The �⇐�-direction is Lemma IV.5. The function v0 of Lemma IV.4
is the function that is computed by the program P . This shows the other
direction.

IV.2 µ-recursion

The µ-operator allows unbounded search.

De�nition IV.7 Let f : Ns+1 → N. The function µf : Ns → N is de�ned
by

µf(a1, . . . , as) = min{n | f(n, a1, . . . , as) = 0 and

for all m < n, f(m, a1, . . . , as) is de�ned }.

De�nition IV.8 The set of all µ-recursive functions is de�ned inductively
as in De�tion IV.1 except that the set is closed under µ-recursion instead of
primitive recursion.

Theorem IV.9 A function is µ-recursive i� it is WHILE computable.

Proof. This proof is just an �add-on� to the proof of Theorem IV.6.
For the �⇒�-direction, we just have to consider one more case in the

proof of Lemma IV.5. If f = µg for some µ-recursive function g : Ns+1 → N,
then we have to show that f is WHILE computable provided that g is. The
following program computes f :

1: n := 0;
2: while f(n, x0, . . . , xs−1) 6= 0 do
3: n := n+ 1
4: od
5: x0 := n

Thus program �nds the �rst n such that f(n, x0, . . . , xs−1) = 0. If no such
n exists, the while loop does not terminate. If one f(n, x0, . . . , xs−1) is
unde�ned, the program does not terminate, too.

For the other direction, assume that we have a WHILE program P =
while xi 6= 0 do P1 od. The functions uλ(n, a0, . . . , a`) constructed in the
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proof of Lemma IV.4 is the content of the variable xλ after executing P1 n
times. Thus

µuλ(a0, . . . , a`)

is the number of times the while loop is executed, and

uλ(µuλ(a0, . . . , a`), a0, . . . , a`)

is the content of xλ after executing P .

Excursus: Programming systems V

We can also assign Gödel numbers to recursions schemes. We start by as-
signin numbers to the constant functions, projections, and successor function. For
instance, 〈0, 〈s, c〉〉 could stand for the function of arity s that has the value c
everywhere, 〈1, 〈s, i〉〉 encodes psi and so on. Then we de�ne Gödel numbers for
composition and primitive and µ-recursion. If we have a functions f or arity s
and s functions gi of arity t and i and j1, . . . , js are their Gödel numbers, then
〈3, t, s, i, j1, . . . , js〉 is the Gödel number for their composition.

Let θi be the function that is computed by the recursion scheme with Gödel
number i. If i is not a valid Gödel number, then θi is some dummy function, for
instance, the function that is unde�ned everywhere. Then the sequence (θi)i∈N is
a programming system.

It is universal, since we can use a simulation of the universal WHILE program
to simulate recursion schemes. It is clearly acceptable, since composition is directly
available in recursion schemes.
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19 Turing machines and

complexity classes

Computability theory tries to separate problems that can be solved algorith-
mically from problems that cannot be solved algorithmically. Here, �can�
and �cannot� means that there exists or does not exist a Turing machine,
WHILE program, JAVA program, etc. that decides or recognizes the given
language. We de�ned the classes REC and RE.

While it is nice to know that there is a Turing machine, WHILE pro-
gram, or JAVA program that decides my problem, it does not help at all if
the running time is so large that I will not live long enough to see the out-
come. Complexity theory tries to separate problems that can be solved in
an acceptable amount of time (�feasible� or �tractable� problems) from prob-
lems that cannot be solved in an acceptable amount of time (�infeasible� or
�intracable� problems). Space comsumption is another resource that we will
investigate. In contrast to the last part, we will use Turing machines as our
main model of computation, which is traditionally used in complexity the-
ory. The main reason is that one step of a Turing machine only manipulates
a constant amount of data while a simple statement of a WHILE program
can manipulate large numbers in one step, so the costs of a simple statement
depend on the size of the operands. In the end, it will not matter at all,
since usually, we will completely abstract from the concrete implemenation
details and only give high level explanations of algorithms and reductions.

19.1 Deterministic complexity classes

Let M be a deterministic Turing machine and let x be an input. Assume
thatM halts on x, i.e., there is a unique accepting or rejecting con�guration
Ct such that SC(x) `∗M Ct. Then, by de�nition, there is a unique sequence

SC(x) `M C1 `M · · · `M Ct.

This sequence is called a computation of M on x. t is the number of steps
that M performs on input x. We denote this number t by TimeM (x). If M
does not halt on x, then the computation of M on x is in�nite. In this case
TimeM (x) is in�nite.

For an n ∈ N, we de�ne the time complexity of M as

TimeM (n) = max{TimeM (x) | |x| = n}.
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170 19. Turing machines and complexity classes

In other words, TimeM (n) measures the worst case1 behaviour of M on
inputs of length n. Let t : N→ N be some function. A deterministic Turing
machine M is t time bounded if TimeM (n) ≤ t(n) for all n.

For a con�guration C = (q, (p1, x1), . . . (pk, xk)), Space(C) = max1≤κ≤k |xκ|
is the space used by the con�guration. Occassionally, we will equip Turing
machines with an extra input tape. This input tape contains, guess what,
the input x of the Turing machine. This input tape is read-only, that is, the
Turing machine can only read the symbols but not change them. (Techni-
cally, this is achieved by requiring that whenever the Turing machine reads
a symbol on the input tape it has to write the same symbol.) What is an
extra input tape good for? The space used on the input tape (that is, the
symbols occupied by the input) is not counted in the de�nition of Space(C).
In this way, we can talk about sublinear space complexity.

Example 19.1 Consider the language

L = {x ∈ {0, 1}∗ | the number of 0's in x equals the number of 1's}.

L can be recognized with space O(log n). We read the input and for every
0 that we encounter, we increase a binary counter on the work tape by one.
Then we read the input a second time and decrease the counter for every 1.
We accept if in the end, the counter on the work tape is zero. In every step,
we store number ≤ |x| on the work tape. This needs log |x| bits (on the work
tape).

Let M be a deterministic Turing machine and let x be an input. First
assume that M halts on x. Let

SC(x) `M C1 `M · · · `M Ct

be the computation of M on x. Then SpaceM (x) = max{Space(Cτ ) | 1 ≤
τ ≤ t}. If M does not halt on x, then we build the maximum over in�nitely
many con�gurations. If the maximum does not exist, then SpaceM (x) =∞.

For an n ∈ N, we de�ne the space complexity of M as

SpaceM (n) = max{SpaceM (x) | |x| = n}.

In other words, SpaceM (n) measures the worst case behaviour of M on
inputs of length n. Let s : N→ N be some function. A deterministic Turing
machine M is s space bounded if SpaceM (n) ≤ s(n) for all n.

A language L is deterministically t time decidable i� there is a deter-
ministic Turing machine M such that L = L(M) and TimeM (n) ≤ t(n)

1Worst case complexity has been a very fruitful concept in the design and analysis of
algorithms. One could think of other ways of measuring complexity, for instance, average
case complexiy. But if an algorithm is e�cient in the worst case, it is also in the average
case. And we avoid a discussion of what is a typical input.
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for all n. In the same way, a function f is deterministically computable in
time t(n) i� there is a deterministic Turing machine M that computes f
and TimeM (n) ≤ t(n) for all n. Note that a time bounded Turing machine
always halts.

De�nition 19.2 Let t : N→ N. Then

DTime(t) = {L | L is deterministically t time decidable},
DTimek(t) = {L | there is a t time bounded k-tape Turing machine M

with L = L(M)}.

For a set of functions T , DTime(T ) =
⋃
t∈T DTime(t). DTimek(T ) is de�ned

analogously.
The same is done for space complexity: A language L is deterministically

s space recognizable if there is a deterministic Turing machine M such that
L = L(M) and SpaceM (n) ≤ s(n) for all n. Note that a space bounded
Turing machine might not halt on inputs that are not in L(M). But we
will see in the next chapters that one can e�ectively detect when a space
bounded machine has entered an in�nite loop. In the same way, a function f
is deterministically computable in space s if there is a deterministic Turing
machine M that computes f and SpaceM (n) ≤ s(n) for all n. We will see
that for space bounded computations, also sublinear functions s are mean-
ingful. But to speak of sublinear space complexity, the input should not be
counted. Therefore, we will use a Turing machine M with an extra input
tape when considering space complexity.

De�nition 19.3 Let s : N→ N. Then

DSpace(s) = {L | L is deterministically s space recognizable},
DSpacek(s) = {L | there is a s space bounded k-tape Turing machine M

with L = L(M)}.

In the de�nition of DSpace(s), the Turing machines have an additional input
tape.

For a set of functions S, DSpace(S) =
⋃
s∈S DSpace(s). DSpacek(S) is de-

�ned analogously.

Exercise 19.1 Intuitively, it is clear that sublinear time is not very mean-
ingful here.2 Give a formal proof for this. In particular show: Let M
be a deterministic Turing machine. Assume that there is an n such that
M reads at most n − 1 symbols of the input x for each x with |x| = n.
Then there are words a1, . . . , am with |ai| < n for all 1 ≤ i ≤ m such that
L(M) =

⋃m
i=1 ai{0, 1}∗.

2This however changes if we have random access to the input and we are content with
approximate results. Sublinear time algorithms are a very active area of research right
now.
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19.2 Nondeterministic complexity classes

In the following chapters, we will need nondeterministic Turing machines,
too. Instead of a function

δ : Q× Γk → Q× Γk × {L, S,R}k,

the transition function is now a function

δ : Q× Γk → P(Q× Γk × {L, S,R}k).

If in a given state q, a Turing machine reads the symbols γ1, . . . , γk on the
tapes, then it now has several possibilities of performing a step. Therefore,
a con�guration C now has several successor con�gurations, one for each
possible step that the Turing machine can perform. This is very similar to
nondeterministic �nite automata.

Let M be a nondeterministic Turing machine and x ∈ Σ∗. We de�ne a
(possibly in�nite) rooted labeled tree T , the computation tree of M on x as
follows: The root is labeled with SC(x). As long as there is a node v that is
labeled with a con�guration C that is not a halting con�guration, we do the
following: Let C1, . . . , C` be all con�gurations such that C `M Cλ for 1 ≤
λ ≤ `. Now v gets ` children labeled with C1, . . . , C`. (Note that it is possible
that di�erent nodes in T might have the same label.) A path from the root
to a leaf in T is called a computation path. It is accepting if the con�guration
at the leaf is accepting, otherwise it is rejecting. There also might be in�nite
computation paths; these are considered to be rejecting. A nondeterministic
Turing machine accepts an input x i� the corresponding computation tree
has an accepting computation path. Note that ifM is deterministic, then the
computation tree is a path. A nondeterministic Turing machine recognizes
the language

L(M) = {x ∈ Σ∗ |M accepts x}.

Example 19.4 Figure 19.1 shows a nondeterministic Turing machine M .
In the state ident, M just goes to the right and leaves the content of the
tape unchanged. In the state invert, it goes to the right and replaces every 0
by a 1 and vice versa. Whenever it reads a 1, M may nondeterministically
choose to stay in its current state or to go the other state. M accepts if it
is in the state invert after reading the whole input. Figure 19.2 shows the
computation tree on input 010. It is quite easy to see that L(M) = {x |
x contains at least one 0}.

TimeM (x) is the length of a shortest accepting computation path in the
computation tree of M on x, if such a path exists, and ∞ otherwise. We set

TimeM (n) = max{TimeM (x) | |x| = n, x ∈ L(M)}.
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ident

1; 1, R
0; 0, R

invert

0; 1, R

0; 1, R

0; 1, R
1; 0, R

stop
�; �, S

Figure 19.1: A nondeterministic 1-tape Turing machine. Whenever the Tur-
ing machine reads a 0, it may switch between the states ident and invert.
In the state ident, the machine does not change the bits read. In the state
invert, it exchanges 0's with 1's and vice versa.

invert

ident

ident

ident

ident ident

invert

invert

stop stop

invert

0 0� �1

0 0� �1

0 0� �1

0 0� �1 1 �1 0�0� �1 1

0 �11�

0 �1 0�

1 �1 0�

0� �1 1 1 �1 0�

Figure 19.2: The computation tree of the Turing machine from Figure 19.1
on the word 010. The nodes are labeled with the con�gurations, right to the
tape, there is the current state standing. The position of the head is marked
by the small triangle. There are four paths in the computation tree, two of
them are accepting (the state is stop).
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If there is no x ∈ L(M) with length n, then TimeM (n) = 0. Note that this
de�nition is somewhat di�erent to the deterministic case, where we took
the maximum over all x of length n. Let t : N → N be some function. A
nondeterministic Turing machineM is weakly t time bounded if TimeM (n) ≤
t(n) for all n.

Exercise 19.2 Show that for any nondeterministic Turing machine M that
is weakly t time bounded there is an equivalent Turing machine M ′ (i.e.,
M(x) = M ′(x) for all x) that is weakly O(t) time bounded such that for
every input x, the computation tree of M ′ on x is a binary tree.

If every computation ofM on every x (and not only in L(M)) has length
at most t(|x|), then M is strongly t time bounded. Although strongly time
bounded seems to be stronger than weakly time bounded, we will see soon
that these two concepts lead to the same complexity classes for all �reason-
able�3 time bounds.

De�nition 19.5 Let t : N→ N. Then

NTime(t) = {L | there is a weakly t time bounded nondeterministic

Turing machine M with L = L(M)},
NTimek(t) = {L | there is a weakly t time bounded nondeterministic

k-tape Turing machine M with L = L(M)}.

For a set of functions T , NTime(T ) =
⋃
t∈T NTime(t). NTimek(T ) is de�ned

analogously.
Warning! I am fully aware of the fact that there does not exists a

physical realization of a nondeterministic Turing machine! (At least, I do
not know of any.) Nondeterministic Turing machine are not interesting per
se (at least not for an overwhelming majority of the world population), they
are interesting because they characterize important classes of problems. The
most important ones are the so-called NP-complete problems, a class which
we will encounter soon. The example in Section 19.3 gives a �rst impression.

For a nondeterministic Turing machine M and an input x ∈ L(M), we
de�ne space SpaceM (x) as follows: we take the minimum over all accepting
paths of the maximum of the space used by any con�guration along this path
if such an accepting path exists, and ∞ otherwise. We set

SpaceM (n) = max{SpaceM (x) | |x| = n, x ∈ L(M)}.

If there is no x of length n in L(M), then SpaceM (n) = 0. Let s : N → N
be some function. A nondeterministic Turing machine M is weakly s space

3One de�nition of reasonable is the following: Pick your favourite book on algorithms
and open a random page. If you see a function N→ N on this page, then it is reasonable,
maybe except for the inverse of the Ackermann function.
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bounded if SpaceM (n) ≤ s(n) for all n. We de�ne strongly s space bounded
in the same way as we did for strongly time bounded.

De�nition 19.6 Let s : N→ N. Then

NSpace(s) = {L | there is a weakly s space bounded nondeterministic

Turing machine M with L = L(M)},
NSpacek(s) = {L | there is a weakly s space bounded nondeterministic

k-tape Turing machine M with L = L(M)}.

In the case of NSpace(s), the Turing machines have an extra input tape.

19.3 An example

Consider the following arithmetic formula

x1 + 2x2(1− x1) + x3.

We want to know whether we can assign the values 0 and 1 to the variables
in such a way that the formula evaluates to 1. Above x1 7→ 1, x2 7→ 0, and
x3 7→ 0 is such an assignment. The formula

x1(1− x1)

does not have such an assignment. We want to decide whether a given
formula has such an assignment or not.

To make formulas accessible to Turing machines, we have to encode them
as binary strings. The actual way how we do this will not matter in the
following, as long as the encoding is �easily accessible�. Here, this means
that given an assignment, we can easily evaluate the formula F in time, say,
O(`3) 4 where ` is the length of (the encoding of) the formula.

The following excursus formalizes the problem, but I recommend to skip
it �rst.

Excursus: Formalization

Let X = {x1, x2, . . . } be a set of variables. Arithmetic formulas are de�ned
inductively:

1. Every x ∈ X and every z ∈ Z is an arithmetic formula.

4O(`3) can be easily achieved for reasonable encodings: A formula F of length ` has
at most ` arithmetic operations and the value of the formula in the end has at most `
bits (proof by induction). Addition and multiplication can be performed in time O(`2) by
the methods that you learn in school and we have ≤ ` of them. Using more sophisticated
methods and a better analysis, one can bring down the evaluation time to O(`1+ε) for any
ε > 0.
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2. If F and G are arithmetic formulas, then (F ·G) and (F +G) are arithmetic
formulas.

An assignment is a map a : X → Z. If we replace every occurence of a variable
x by a(x) in a formula F , then F just describes an integer. We extend a to the set
of all arithmetic formulas inductively along the above de�nition:

1. a(z) = z for all z ∈ Z.

2. a(F ·G) = a(F ) · a(G) and a(F +G) = a(F ) + a(G) for formulas F and G.

Since in every formula, only a �nite number of variable occur, we usually restrict
assignments to the variables occurring in a given formula. An assignment is called
an S assignment for some S ⊆ Z, if im a ⊆ S.

We can encode arithmetic formulas as follows: For instance, we can encode the
variable xi by [0,bin(i)] and a constant z by [1, σ(z),bin(|z|)] where σ(z) is 1 if
z ≥ 0 and 0 otherwise. Then we de�ne the encoding c inductively by c(F · G) =
[10, c(F ), c(G)] and c(F +G) = [11, c(F ), c(G)], where [. . . ] is our pairing function.
This is a very structured encoding, since it explicitly stores the order in which
operations are performed. Alternatively, we �rst encode xi by the string xbin(i)
and z by σ(z) bin(|z|). Now we can view our formula as a string over the alphabet
{(, ),+, ·, x, 0, 1}. To get a string over {0, 1}, we just replace each of the seven
symbols by a di�erent binary string of �xed length. (Three is su�cient, since
23 ≥ 7.) This is a rather unstructured encoding. Nevertheless, both encodings
allow us to evaluate the formula in time O(`3).

Since the encoding does not matter in the following, we will not specify
it explicitly. We just assume that the encoding is reasonable. Since there
is usually no danger of confusion, we will even write F for both the for-
mula itself (as a mathematical object) and its encoding (instead of c(F ) or
something like that). Let

AFSAT = {F | there is an {0, 1} assignment such that F evaluates to 1.}

How hard is it to decide whether a given formula F has a {0, 1} assignment
such that F evaluates to 1? I.e., how hard is it to decide whether F ∈
AFSAT? Assume that F has length n. Since F can have at most n variables,
there are 2n possible assignments. For each of them we can check in time
O(n3) whether F evaluates to 1 or not. Thus

AFSAT ∈ DTime(O(2n · n3))

A nondeterministic Turing machine can do the following. It �rst reads the
input and for each symbol it reads it has two options: Either write a 0 on
the second tape or a 1, see Figure 19.3. The computation tree has 2n paths.
At every leaf, the machine has written one string from {0, 1}n on the second
tape. We now interpret this string as an assignment to the variables, ignoring
some of the bits if there are fewer than n variables. The machine now just
(deterministically) evaluates the formula with respect to this assignment and
accepts if the outcome is 1 and rejects otherwise.
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gen

1; 1, R �; 1, R
0; 0, R �; 0, R

stop
�; �, S �; �, S

Figure 19.3: A nondeterminstic Turing machine that generates all strings
from {0, 1}n.

The machine is clearly O(n3) time bounded, since the length of each com-
putation path is dominated by the time needed for evaluating the formula.
It correctly decides whether F ∈ AFSAT, too: If there is a {0, 1} assignment
such that F evaluates to 1, then it will be generated along some computation
path and at the end of this path, the Turing machine will accept. If there is
no such assignment, then there cannot be any accepting computation path
at all. Hence

AFSAT ∈ NTime(O(n3)).

The deterministic Turing machine tries all possible assignments, one after
another. It is an open problem whether there is a substantially more clever
way. A nondeterministic Turing machine can try them in parallel. Or we
can view it like this: If we are given an assignment, then we can easily check
whether F evaluates to 1 under this assignment.

Like AFSAT (which is more of pedagogical value), there are an abun-
dance of similar and very, very, very important problems (so called NP-
complete problems), that have the same property: To �nd a solution, we do
not know anything really better than trying all possible solution. But if we
get a potential solution, we can easily verify whether it is really a solution.
This is what gives nondeterminism its right to exists . . . (and there might be
some other reasons, too)

Excursus: Complexity of WHILE programs

We proved that WHILE computable functions and Turing computable functions
are essentially the same. But what about time and space complexity. Are there
functions that can be computed much faster by WHILE programs than be Turing
machines or vice versa? The answers are �no� and �it depends�.

First of all, Turing machines get bit strings as inputs and WHILE programs get
natural numbers. The complexity of a Turing machine is measured in the length
of the input. So we should measure the running time of a WHILE program as a
function in | cod−1(n)| = log n. The running time of a WHILE program on some
input i is the number of simple statements that are executed on i. (If a simple
statement is executed several times, then it is of course counted this many times.)
The running time on inputs of length ` is the maximum over the running times on
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inputs i with | cod−1(i)| = `. If S = (σ0, . . . , σ`) is a state of a WHILE program,
then the space used by this state is Space(S) := max{| cod−1(σλ)| | 0 ≤ λ ≤ `}.

One has to be careful when de�ning the running time of a WHILE program.
We here simply count the number of simple statements. This is okay here, since
every simple statement can enlarge the space used by a state by a constant amount.
If multiplication was also a simple operation, then we could double the space with
one simple operation. This would make WHILE programs very powerful. To get
meaningful results in this case, a simple operation has to cost Space(S) where S is
the current state.

Now let P be a simple statement. Assume we have a state S = (σ0, . . . , σ`) and
let S′ = (σ′0, . . . σ

′
`) := ΦP (S). We claim that Space(S′) ≤ 1+Space(S), if Space(S)

is large enough. Assume that P = xi := xj+xk. Then σ
′
i = σj+σk and all other en-

tries are not changed. But then | cod−1(σ′i)| ≤ 1 + max{| cod−1(σj)|, | cod−1(σk)|}.
The same is true if P is a subtraction. The case P = xi := c can only change
Space(S) if Space(S) ≤ | cod−1(c)|. But every WHILE program contains only a
�nite number of constants. This means the assigning constants does not have any
asymptotic e�ect. It follows by induction that by executing t simple statements,
we can increase the space consumption by at most t.

Now consider the simulation of a WHILE program by a Turing machine. We
�rst replaced the WHILE program by a GOTO programm but the number of simple
statements and the number of space used by the GOTO program is the essentially
same. In this simulation, the content of each variable is stored on a di�erent tape.
Hence we do not need more space in this simulation than the GOTO program does.
To simulate a simple statement, we have just to add or subtract two numbers. This
can be done in time linear in the size of the operands. (We only used incrementation
and decrementation in our simulation, but it is easily extended to addition and
subtraction.) Thus we only get a quadratic slowdown when simulating WHILE
programs by Turing machines.

When we simulated Turing machines by WHILE programs, we stored the tapes
in array and then could easily do a step-by-step simulation. So the running time
of the Turing machines is multiplied by the time needed to manipulate the arrays.
If we use the ordinary pairing function 〈., .〉, then the sizes can explode. But since
we only store elements a0, . . . , as from a �nite set {0, 1, . . . , b}, say, we can do this
by interpreting a0, . . . , as as the digits of a b-nary number

∑s
i=0 aib

i. In this way,
we again only get a quadratic slowdown.
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20 Tape reduction, compression,

and acceleration

In this chapter, we further investigate the Turing machine model.

20.1 Tape reduction

De�nition 20.1 A deterministic Turing machine M simulates a Turing
machine M ′, if L(M) = L(M ′) and for all inputs x, M halts on x i� M ′

halts on x.

Theorem 20.2 Every deterministic Turing machine can be simulated by a
deterministic 1-tape Turing machine.

Proof. LetM a be k-tape Turing machine. We construct a 1-tape Turing
machine S that simulates M . S simulates one step of M by a sequence of
steps.

We have to store the content of all k tapes on one tape. We think of the
tape of S divided into 2k tracks. To this aim, we enlarge the tape alphabet
of S. The work alphabet of S is Γ′ = (Γ×{∗,−})k∪Σ∪{�}. The (2κ−1)th
component of a symbol of Γ′ stores the content of the κth tape of M . The
2κth component is used to mark the position of the head on the κth tape.
There will be exactly one ∗ on the 2κth track, this ∗ will mark the position
of the head. All other entries of the track will be �lled with −'s. Figure 20.1
depicts this construction: One column on the righthand side of the �gure is
one symbol on the tape of S. In particular, a � or − in such a column is not
the blank of S. The blank of S is just �, one column just �lled with one �.

Figure 20.2 shows how the simulating machine S works. Let x ∈ Σ∗ be
the given input. First, S replaces the input x by the corresponding symbols
from (Γ× {∗,−})k. The �rst track contains x, all other odd tracks contain
blanks. On the even tracks, the ∗ is in the �rst position of each track.

One step of M is now simulated as follows: S always starts on the left-
most position of the tape visited so far and moves to the right until it reaches
the �rst blank (of S)1. On its way, S collects the k symbols under the heads of
M and stores them in its �nite control. Once S has collected all the symbols,
it can simulate the transition of M . It changes the state accordingly and
now moves to the left until it reaches the �rst blank (of S). On its way back,

1A blank of S indicates that we reached a position that M has not visited so far on
any of its tapes.
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Figure 20.1: Lefthand side: The k tapes of the k-tape Turing machine M .
Righthand-side: The one and only tape of the simulating machine S. The
tape of S is divided into 2k tracks, two for each tape of M . The �rst track
of each such pair of tracks stores the content of the corresponding tape of
M , the second stores the position of the head which is marked by �∗�.

it makes the changes that M would make. It replaces the entries in the
components marked by a ∗ and moves the ∗ in the corresponding direction.

If M has not halted yet, S repeats the loop described above. If M halts,
S halts, too, and accepts i� M accepts.

Remark 20.3 The above construction also works for nondeterministic Tur-
ing machines. Whenever S has collected all the symbols and simulates the
actual transition of M , it chooses one possible transition nondeterministi-
cally.

Remark 20.4 If M has an additional input tape, then we can also equip S
with an additional input tape. If M has a sublinear space bound, then also
S has a sublinear space bound.

Remark 20.5 (Implementation details) The description of the simula-
tor in the above proof is rather high level. A more low level description,
i.e., the explicit transition function, usually does not provide any insights.
But we tacitely assume that you can write down�at least in principle�the
transition function of the 1-tape Turing machine constructed above.

Let's convince ourselves that we can really do this: Consider the part of
S that collects the symbols that M would read. The states are of the form
{collect} × Q × (Γ ∪ {/})k. The �rst entry of a tuple (collect, q, γ1, . . . , γk)
indicates that we are in a collection phase. (If the collection phase were the
only phase that uses tuple of the form Q × (Γ ∪ {/})k, then we could skip
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Input: x ∈ Σ∗

Output: accept if x ∈ L(M), reject otherwise

1. S replaces the input x by the corresponding symbol of Γ′,
i.e., x1 is replaced by (x1, ∗,�, ∗, . . . ,�, ∗) and each other xν is
replaced by (xν ,−,�,−, . . . ,�,−).

2. S always stores the current state of M in its �nite control. In
the beginning, this is the starting state of M .

3. As long as M does not halt, S repeats the following:

(a) S moves to the right until it reaches the �rst blank. On
its way to the right, S reads the symbols that the heads
of M are reading and stores them in its �nite control.

(b) When S reaches the right end of the tape content, it has
gathered all the information to simulate one step of M . It
changes the internally stored state of M accordingly.

(c) S now moves to the left until it reaches the �rst blank. On
its way to the left, S replaces the entries in components
that are marked by a ∗ by the symbol thatM would write
on the corresponding tape and moves the ∗ like M would
move the corresponding head.
If S has to move one of the markers ∗ to a cell that still
contains �, the blank of S, then it �rst replaces this blank
by (�,−, . . . ,�,−).

4. If M accepts, S accepts. Otherwise, S rejects.

Figure 20.2: The simulator S.
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this �rst component.) The second component stores the current state of M .
It shall not be changed during the collection phase. Finally, γκ stores the
symbol that is read by M on the κth tape. γκ = / indicates that the position
of the head on tape κ has not been found yet.

The transition function δ′ of S (restricted to the states of the collect
phase) is now de�ned as follows:

δ′((collect, q, γ1, . . . , γk), (η1, . . . , η2k)) = ((collect, q, γ′1, . . . , γ
′
k), (η1, . . . , η2k), R)

for all q ∈ Q, γ1, . . . , γk ∈ Γ ∪ {/} where

γ′κ =

{
γκ if η2κ = −
η2κ−1 if η2κ = ∗

for 1 ≤ κ ≤ k. If the symbol η2κ on the 2κth track is ∗, then we found the
head on the κth tape and store η2κ−1, the symbol that M reads on the κth
tape, in the state of S.

De�nition 20.6 Let t, s : N→ N. Then

DTimeSpace(t, s) = {L | there is a t time and s space bounded

Turing machine M with L = L(M)}.

DTimeSpacek(t, s) and NTimeSpacek(t, s), . . . are de�ned accordingly.

Theorem 20.7 For all t, s : N→ N,

DTimeSpace(t, s) ⊆ DTimeSpace1(O(ts),O(s)),

NTimeSpace(t, s) ⊆ NTimeSpace1(O(ts),O(s)).

If s(n) = O(n), then the one-tape Turing machine needs an extra input tape.

Proof. Let L ∈ DTimeSpace(t, s). Let M be a deterministic Turing
machine with L = L(M). Assume that M has k tapes. The Turing machine
S in Theorem 20.2 simulates one step of M by O(s(|x|)) steps (where x is
the given input). M makes at most t(|x|) steps. Furthermore, S does not
use more twice the spaceM uses. (On each track, S does not use more space
then M on the corresponding tape. But on one tape M could use the cells
to the left of cell 0 and on the other to the right.)

The nondeterministic case follows in the same way by Remark 20.3.

Corollary 20.8 For all t : N→ N,

DTime(t) ⊆ DTime1(O(t2)),

NTime(t) ⊆ NTime1(O(t2)).

Proof. Let M be a t time bounded Turing machine. In t steps, a turing
machine can visit at most t cells. Thus SpaceM (n) ≤ t(n) for all n, and the
corollary follows from Theorem 20.7.
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20.2 Tape compression

The aim of this and the next section is to show that we do not need to take
care of constant factors when measuring space and time. Every Turing ma-
chine M can be simulated by another one that uses only a constant fraction
of the space used by M . (Note that we will not even care about polynomial
factors in the following.)

Theorem 20.9 For all 0 < ε ≤ 1 and all s : N→ N,

DSpace(s(n)) ⊆ DSpace1(dεs(n)e),
NSpace(s(n)) ⊆ NSpace1(dεs(n)e).

If s(n) = O(n), then the one-tape Turing machines need an extra input tape.

Proof overview: In the same way as a 64 bit architectur can store more
information in one memory cell than an 8 bit architectur, we enlarge the
tape alphabet to store several symbols in one symbol and then just simulate.

Proof. Let c = d1/εe. Let M be a deterministic k-tape Turing machine
with work alphabet Γ. We simulate M by a deterministic k-tape Turing
machine with work alphabet Γ′ = Γc ∪ Σ ∪ {�}. A block of c contiguous
cells of a tape of M are coded into one cell of S. Instead of s cells, S then
uses only ds/ce ≤ dεse cells. S can simulate M step by step. S stores the
position of the head within a block of c cells in its state. IfM moves his head
within such a block, then S does not move its head at all but just changes
the symbol.

If M does not have an extra input tape, then it �rst has to compress the
input of length n into dn/ce cells. But in this case, M can never use less
than space n. If M has an extra input tape, this step is not necessary.

If M is nondeterministic, the same simulation works.

Remark 20.10 (Implementation details) Again, let's try to formalize a
part of the transition function δ′ of S. The states of S are of the form
Q × {1, . . . , c}. (q, i) means that M is in state q and its head is on the ith
symbol of the current block. Assume that δ(q, η) = (q′, η′, R). Then

δ′((q, i), (γ1, . . . , γc)) =

{
((q′, i+ 1), (γ′1, . . . , γ

′
c), S) if i < c

((q′, 1), (γ′1, . . . , γ
′
c), R) if i = c

for all q ∈ Q, i ∈ {1, . . . , c}, and all (γ1, . . . , γc) with γi = η, where γ′j = γj
for j 6= i and γ′i = η′.

Exercise 20.1 Show the following �converse� of Theorem 20.9: For any s
space and t time bounded Turing machineM with input alphabet {0, 1}, there
is a O(s) space and O(t) time bounded Turing machine that only uses the
work alphabet {0, 1,�}.
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20.3 Acceleration

Next, we prove a similar speed up for time. This simulation is a little more
complicated than the previous one.

Exercise 20.2 Show the following: For all k ≥ 2, all t : N → N, and all
0 < ε ≤ 1,

DTimek(t(n)) ⊆ DTimek(n+ ε(n+ t(n)))

NTimek(t(n)) ⊆ NTimek(n+ ε(n+ t(n))).

Proof overview: Like in Theorem 20.9, we want to store several, say c,
cells into one. To get a speed up, the simulating machine S now has to
simulate c steps in one step. This is no problem if M stays within the c cells
of one block, since we just can precompute the outcome. Problematic is the
following case: During the c steps, the Turing machine M goes back and
forth between two cells that belong to di�erent (but neighboured) blocks.
To overcome this problem, S always stores three blocks in its �nite control:
The block B where the head of M is located and the blocks to the left and
the right of B. With these three blocks, S can simulate c steps of M in its
�nite control. Then S updates the tape content. If M left the block B, then
S also has to update the blocks in its �nite control.

If t(n) = ω(n), then we can speed the computation by any factor ε in
Exercise 20.2. If t(n) = O(n), then we can get a running time of (1 + ε)n for
any ε > 0.

What to measure?

Time and space consumption of Turing machines should only be
measured up to constant factors!

20.4 Further exercises

Exercise 20.3 Prove the following. Let c be some constant. Every k-tape
Turing machine M can be simulated by a k-tape Turing machine S such that

TimeS(n) =

{
n if n ≤ c
TimeM (n) + c otherwise

SpaceS(n) =

{
0 if n ≤ c
SpaceM (n) otherwise

In other words, only the asymptotic behaviour matters.
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21 Space versus Time,

Nondeterminism versus Deter-

minism

21.1 Constructible functions

De�nition 21.1 Let s, t : N→ N.

1. t is time constructible if there is a O(t) time bounded deterministic
Turing machine M that computes the function 1n 7→ bin(t(n)).

2. s is space constructible if there is an O(s) space bounded deterministic
Turing machine M (with extra input tape) that computes the function
1n 7→ bin(s(n)).

Above, bin(n) denotes the binary representation of n.

Exercise 21.1 Show the following:

1. If t is time constructible, then there is a O(t) time bounded determin-
istic Turing machine that on input x writes 1t(|x|) on one of its tapes.

2. If s is space constructible, then there is a s space bounded deterministic
Turing machine (with extra input tape) that on input x writes 1s(|x|)

on one of its tapes.

Time and space constructible functions �behave well�. One examples for
this is the following result.

Lemma 21.2 Let t be time constructible and s be space constructible.

1. If L ∈ NTime(t) then there is a strongly O(t) time bounded nondeter-
mistic Turing machine N with L = L(N).

2. If L ∈ NSpace(s), then there is a strongly O(s) space bounded nonde-
termistic Turing machine N with L = L(N).

Proof. We start with the �rst statement: Let M be some weakly t time
bounded Turing machine with L(M) = L. Consider the following turing
machine N :
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Input: x

1. Construct bin(t(|x|)) on some extra tapes.

2. Simulate M step by step.
On the extra tape, count the number of simulated steps with a
binary counter.

3. When more than t(|x|) steps have been simulated, then stop
and reject.

4. If M halts earlier, then accept if M has accepted and reject
otherwise.

N is clearly O(t) time bounded, since counting to t(|x|) in binary can be
done in O(t(|x|)) time (amortized analysis!). IfM accepts x, then there is an
accepting path whose length is at most t(|x|). This path will be simulated
by N and hence N will accept x. If M does not accept x, then all paths
in the computation tree are either in�nite or rejecting. In both cases, the
corresponding path of N will be rejecting.

For the second part, let M be some weakly s space bounded Turing
machine with an extra input tape such that L(M ′) = L. Consider the
following Turing machine N :

Input: x

1. Mark 2s(|x|) cells with a new symbol � on each work tape (see
Exercise 21.1), s(|x|) to the left of cell 0 and s(|x|) to the right.

2. Simulate M on x pretending that each � is a �.

3. When we read a real blank � during the simulation, then we
stop and reject.

N is clearly O(s) space bounded. If M accepts x, then there is an
accepting computation path on which M is s space bounded. When N
simulates this path, then N will never reach a � and hence will accept. If
M does not accept x, then N will not accept, too.

Most interesting functions are space and time constructible.

Exercise 21.2 Let a, b, c ∈ N and let f(n) = 2an · nb · logc(n).
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1. If f ∈ ω(n), then f is time constructible.

2. f is also space constructible. This even holds if a, b, c are rational
numberers provided that f ∈ Ω(log n).

21.2 The con�guration graph

Let M be a Turing machine. The set of all con�gurations of M together
with the relation `M can be interpreted as an in�nite directed graph. The
node set of this graph is the set of all con�gurations. We denote this set by
ConfM . We denote this graph by CGM = (ConfM ,`M ).1 This is an in�nite
graph. But to decide whether a Turing machine accepts an input x, we just
have to �nd out whether we can reach an accepting con�guration from the
starting con�guration SCM (x). This task is undecidable in general (it is the
halting problem), but it becomes feasible when the Turing machine is time
or space bounded. For a given space bound s, the relevant part of CGM is
�nite.

Lemma 21.3 Let M be an s space bounded Turing machine with s(n) ≥
log n for all n. There is a constant c (depending on M) such that M on
input x can reach at most cs(|x|) con�gurations from SC(x).

Proof. Let M = (Q,Σ,Γ, δ, q0, Qacc) be a k-tape Turing machine. A
con�guration ofM is described by the current state, the content of the work
tapes and the position of the heads. There are |Q| states, |Γ|s(|x|) possible
contents of a tape and s(|x|) possible positions of the heads. Thus the number
of con�gurations is at most

|Q| ·
(
|Γ|s(|x|)

)k
· s(|x|)k · (|x|+ 2) (21.1)

If the Turing machine does not have an extra input tape, the last factor
|x| + 2 is not necessary. It is easy to see that (21.1) is bounded by cs(|x|)

for some constant c only depending on |Q|, |Γ|, and k. (To bound the last
factor |x|+ 2, we need the assumption s(n) ≥ log n.)

Exercise 21.3 Give an upper bound for the constant c above.

Corollary 21.4 Let s(n) ≥ log n for all n. If a deterministic s space
bounded Turing machine halts on an input x, then it can perform at most
cs(|x|) steps on x, where c is the constant from Lemma 21.3

1Note that the binary relation `M is nothing else than a set of pairs of elements from
ConfM , that is, directed edges.
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Proof. By contradiction: IfM makes more steps, then the computation of
M would contain the same con�guration twice by the pigeon hole principle.
Since M is deterministic, this means that the computation is in�nite.

Corollary 21.5 Let s(n) ≥ log n be space constructible. Then DSpace(s) is
closed under complement, i.e., if L ∈ DSpace(s) so is L̄.

Proof. Let M be an s space bounded deterministic Turing machine for
L. We construct a deterministic Turing machine M̄ as follows: M̄ simulates
M step by step. If M halts, then M̄ halts, too, and accepts if M rejects and
vice versa. Problematic is the case when M does not halt. Here M̄ has to
halt and accept. M marks s(n) cells on an extra tape before starting the
simulation and uses it as a c-nary counter to count the number of steps of
M . If M makes more than cs(n) steps, then M̄ stops and accepts.

Remark 21.6 Corollary 21.5 is trivially true for deterministic time classes,
we just have to exchange accepting states with rejecting states. Whether non-
deterministic time classes are closed under complementation is a major open
problem. Nondeteterministic space classes (with constructible space bounds)
are closed under complementation. This is the remarkable Immerman-Szelepcsényi
theorem. Note that simply exchanging accepting with rejecting states does not
work.

Exercise 21.4 Show the following: Let M be a nondeterministic Turing
machine that is weakly s space bounded. If M accepts some input x, then
there is an accepting path in the computation tree of M on x that has length
at most cs(|x|).

We will use the con�guration graph to simulate space bounded Turing
machines by time bounded ones and nondeterministic ones by deterministic
ones. The following observation is crucial for the proof.

Observation 21.7 Let G be a graph. If there is a path of length ` from u
to v, then there is a node w such that there are paths from u to w and w to
v of length d`/2e and b`/2c, respectively.

Lemma 21.8 Let M be an s space bounded (deterministic or nondetermin-
istic) Turing machine where s(n) ≥ log n is space constructible. There is
a 2O(s(|x|)) time bounded deterministic Turing machine M1 and O(s2(|x|))
space bounded deterministic Turing machineM2 that given x decides whether
an accepting con�guration in CGM is reachable from SCM (x).

Proof. To achieve the time bound 2O(s(|x|)), M1 simply generates the
whole graph of all con�gurations that use space s(|x|). We can enumerate
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these con�gurations, because s is space constructible.2 We can enumerate
all edges in `M , since to �nd the successor of a con�guration, we need time
O(max{|x|, s(|x|)}). Since 2s(|x|) ≥ |x|, this is within the required time
bound. By Lemma 21.3, it is now su�cient to check whether M1 could
reach an accepting con�guration from SC(x). This can be done by your
favourite connectivity algorithm.

The real fun is to do this in space O(s2), i.e., to constructM2. To achieve
this, we de�ne

R(C,C ′, `) =

{
1 if C ′ can be reached from C with ≤ ` steps,
0 otherwise.

If we can compute R(C,C ′, `) for every con�guration C and C ′ and ` ≤
cs(n) in space O(s2(|x|)), then we are done. Here c is the constant from
Lemma 21.3. We enumerate all accepting con�gurations C�there are at
most cs(|n|)�and compute R(SC(x), C, cs(n)). We accept i� at least one
of these values is one. Note that we can reuse the space when computing
R(SC(x), C, cs(n)) for the next C.

We will compute R(C,C ′, `) recursively. We use the identity

R(C,C ′, `) = 1 ⇐⇒ there is a con�guration C ′′ such that

R(C,C ′′, d`/2e) = R(C ′′, C ′, b`/2c) = 1

or C `M C ′.

This suggests the following recursive approach. Enumerate all con�gurations
C ′′, one at a time. Then compute R(C,C ′′, d`/2e). If this value is 1, then
also compute R(C ′′, C ′, b`/2c). If this is 1, then we are done. If one of the
two values is zero, then we try the next C ′′. If we tried all C ′′ without
success, then M2 rejects.

Let S(`) denote the maximum space needed to compute R(C,C ′′, `) for
any C,C ′′. We have

S(`) ≤ O(s(|x|)) + S(d`/2e),
S(1) ≤ O(s(|x|)).

To see this note that we need O(s(|x|)) space to write down C ′′ and then
we need S(d`/2e) space to compute R(C,C ′′, d`/2e) and R(C ′′, C ′, d`/2e),
since we can use the same cells twice. Therefore S(`) = O(s(|x|) · log `). In
particular, S(cs(|x|)) = O(s2(|x|)).

2To enumerate the con�gurations, we have to encode them as strings. This can be
done by giving the states numbers and writing all numbers in the con�guration down in
binary. We separate the components of a con�guration by using some new symbol. In
this way, the strings have length ≤ c · s(|x|) for some constant c. We can now enumerate
all strings of length c · s(|x|) for instance in lexicographical order and check whether it is
a valid con�guration.
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21.3 Space versus time

As a �rst application, we show that a space bounded Turing machines can
be simulated by time bounded ones with an exponential loss.

Theorem 21.9 Let s(n) ≥ log(n) be space constructible. Then

DSpace(s) ⊆ NSpace(s) ⊆ DTime(2O(s)).

Proof. The �rst inclusion is trivial. The second inclusion follows from
Lemma 21.8.

21.4 Nondeterminism versus determinism

Theorem 21.10 Let t be time constructible. Then

NTime(t) ⊆ NSpace(t) ⊆ DTime(2O(t)).

Proof. The �rst inclusion is trivial, since a t time bounded Turing
machine can use at most t(|x|) cells. The second inclusion follows from
Lemma 21.8.

Theorem 21.11 (Savitch) Let s(n) ≥ log n be space constructible. Then

NSpace(s) ⊆ DSpace(O(s2)).

Proof. Again, this follows from Lemma 21.8.
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We are looking for complexity classes, that are robust in the sense that
�reasonable� changes to the machine model should not change the class.
Furthermore, the classes should also characterize interesting problems.

De�nition 22.1

P =
⋃
i∈N

DTime(O(ni))

NP =
⋃
i∈N

NTime(O(ni))

P (P stands for polynomial time) is the class of problems that are con-
sidered to be feasible or tractable. Frankly, an algorithm with running time
O(n1024) is not feasible in practice, but the de�nition above has been very
fruitful. If a natural problem turns out to be in P, then we usually will
have an algorithm whose running time has a low exponent. In this sense, P
contains all languages that we can decide quickly.

NP (NP stands for nondeterministic polynomial time and not for non-
polynomial time) on the other hand, is a class of languages that we would
like to decide quickly. There are thousands of interesting and important
problems in NP for which we do not know deterministic polynomial time
algorithms.

The class P is a robust class. A language that can be decided by a
deterministic Turing machine in polynomial time can be decided by aWHILE
program in polynomial time and vice versa. (This follows easily by inspecting
the simulations that we designed in the �rst part of the lecture. But read
the excursus in Chapter 19.) This is also true for NP, if we equip WHILE
programs with nondeterminism in a suitable way.

The question whether P = NP is one of the big open problems in com-
puter science. Most researchers believe that these classes are di�erent, but
there is no valid proof so far. The best that we can show is

NP =
⋃
i∈N

NTime(O(ni)) ⊆
⋃
i∈N

DTime(2O(ni)) =: EXP,

that is, nondeterministic polynomially time bounded Turing machines can
be simulated by deterministic poly-exponential time bounded ones.
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Excursus: The millenium prize problems

The question whether P equals NP is one of the seven millenium prize problems of
the Clay mathematics institute. (www.claymath.org). If you settle this question,
you get $1000000 (and become famous, at least as famous as a computer scientist
can become).
GerhardWoeginger's P-versus-NP webpage (www.win.tue.nl/∼gwoegi/P-versus-NP.htm)
keeps track of the outgrowth.

22.1 Problems in P

Here is one important problem in P. You may consult your favourite book
on algorithms for many other ones.

s-t-CONN is the problem whether a directed graph has a path from a
given source node s to a target node t:

s-t-CONN = {(G, s, t) | G is a directed graph

that has a directed path from s to t}.

(G, s, t) is an encoding of the graph G and the source and target nodes s
and t. A reasonable encoding would be the following: All nodes are rep-
resented by numbers 1, . . . , n, written down in binary. We encode an edge
by [bin(i), bin(j)]. We encode the whole graph by building a large pair that
consists of bin(n), bin(s), bin(t), and the encodings of all edges, using our
pairing function. Since we only talk about polynomial time computability,
the concrete encoding does not matter, and we will not specify the encoding
in the following.

We will also just write (G, s, t) or G and will not apply an encoding
function. You are now old enough to distinguish whether we mean the graph
G itself or its encoding.

Theorem 22.2 s-t-CONN ∈ P.

22.2 NP and certi�cates

Beside the de�nition of NP above, there is an equivalent one based on veri-
�ers. We call a Turing machine a polynomial time Turing machine if it is p
time bounded for some polynomial p.

De�nition 22.3 A deterministic polynomial time Turing machine M is
called a polynomial time veri�er for L ⊆ {0, 1}∗, if there is a polynomial
p such that the following holds:

1. For all x ∈ L there is a c ∈ {0, 1}∗ with |c| ≤ p(|x|) such that M
accepts [x, c].
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2. For all x /∈ L and all c ∈ {0, 1}∗, M on input [x, c] reads at most p(|x|)
bits of c and always rejects [x, c].

We denote the language L that M veri�es by V (M).

The string c serves as a certi�cate (or witness or proof ) that x is in L. A
language L is veri�able in polynomial time if each x in L has a polynomially
long proof that x ∈ L. For each x not in L no such proof exists.

Note that the language V (M) that a veri�er veri�es is not the language
that it accepts as a �normal� Turing machine. L(M) can be viewed as a
binary relation, the pairs of all (x, c) such that M accepts [x, c].

Theorem 22.4 L ∈ NP i� there is a polynomial time veri�er for L.

Proof. We only prove the �=⇒�-direction. Since L is in NP there is a
nondeterministic Turing machine M whose time complexity is bounded by
some polynomial p such that L(M) = L. We may assume w.l.o.g. that
in each step, M has at most two nondeterministic choices. We construct a
polynomial time veri�er V for L. V has one more tape than M . Let [x, c]
be the input for V . On the additional tape, V marks p(|x|) cells. (This is
possible in polynomial time, since p is time constructible.) Then it copies
the �rst p(|x|) symbols of c into these marked cells. Now V simulates M
on x step by step. In each simulated step, it reads one of the bits of c on
the additional tape. If M has a nondeterministic choice, V uses the bit of c
read in this step to chose one of the two possibilites M has. (To this aim,
we order the tuples in the relation δ arbitrarily. If the bit read is 0, then we
take the choice which appears before the other one in this ordering. If the
bit read is 1, we take the other choice.) In this way, c speci�es one path in
the computation tree T of M on x. Now if x ∈ L, then there is one path
in T of length at most p(|x|) that is accepting. Let c be the bit string that
corresponds to this path. Then V accepts [x, c]. If x /∈ L, then no such path
exists and hence V will not accept [x, c] for any c. Cleary, the running time
of V is bounded by O(p(|x|)).

Exercise 22.1 Prove the other direction of Theorem 22.4

22.3 Problems in NP

There is an abundance of problems in NP. We here just cover the most basic
ones (most likely, even less).

A clique of a graph G = (V,E) is a subset C of V such that for all
u, v ∈ C with u 6= v, {u, v} ∈ E. A clique C is called a k-clique if |C| = k.
Clique is the following language:

Clique = {(G, k) | G is an undirected graph with a k-clique}.
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A vertex cover of a graph G = (V,E) is a subset C of V such that for
each edge e ∈ E, e ∩ C 6= ∅. (Recall that edges of an undirected graph are
sets of size two. Thus this condition means that every edge is covered by at
least one vertex in C.) VC is the following problem:

VC = {(G, k) | G is an undirected graph

that has a vertex cover of size ≤ k}.

Subset-Sum is the following problem:

Subset-Sum = {(x1, . . . , xn, b) | x1, . . . , xn, b ∈ N and there is an

I ⊆ {1, . . . , n} with
∑
i∈I

xi = b.}

Let G = (V,E) be a graph and V = {v1, . . . , vn}. G has a Hamiltonian
cycle if there is a permutation π such that for all 1 ≤ i < n, {vπ(i), vπ(i+1)} ∈
E and {vπ(n), vπ(1)} ∈ E, i.e., there is a cycle that visits each vertex of V
exactly once. HC is the following problem:

HC = {G | G has a Hamiltonian cycle}.

Next we consider a weighted complete graph G = (V,
(
V
2

)
, w) where(

V
2

)
denotes all subsets of V of size 2 and w :

(
V
2

)
→ N assigns to each

edge a nonnegative weight. The weight of a Hamiltonian cycle is the weight
of the edges contained in it, i.e.,

∑n−1
i=1 w({vπ(i), vπ(i+1)}) +w({vπ(n), vπ(1)}).

The traveling salesman problem is the following problem:

TSP = {(G, b) | G is a weighted graph with

a Hamiltonian cycle of weight ≤ b}.

You can think of a truck that has to deliver goods to di�erent shops and we
want to know whether a short tour exists.

Let x1, . . . , xn be Boolean variables, i.e., variables that can take values
0 and 1, interpreted as false and true. A literal is either a variable xi or
its negation x̄i. A clause is a disjunction of literals `1 ∨ · · · ∨ `k. k is the
length of the clause. A formula in conjunctive normal form (formula in
CNF for short) is a conjunction of clauses c1 ∧ · · · ∧ cm. An assignment a is
a mapping that assigns each variable a value in {0, 1}. Such an assignment
extends to literals, clauses, and formulas in the obvious way. A formula
is called satis�able, if there is an assignment such that the formula attains
the value 1. Such an assignment is called a satisfying assignment. If all
assignments are satisfying, then the formula is called a tautology.

The satis�ability problem, the mother of all problems in NP, is the fol-
lowing problem:

SAT = {φ | φ is a satis�able formula in CNF}.
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A formula in CNF is in `-CNF, if all its clauses have length at most `.
`SAT is the following problem:

`SAT = {φ | φ is a satis�able formula in `-CNF}.

Golden rule of nondeterminism

Nondeterminism is interesting
because it characterizes important problems.

We do not know any physical equivalent to nondeterminism. As far as I

know, nobody has been built a nondeterministic Turing machine. But NP

is an interesting class because it contains a lot of important problems.

Theorem 22.5 Clique,VC, Subset-Sum,HC,TSP,SAT, `SAT ∈ NP.

Proof. We show that all of the problems have a polynomial time veri�er.
Let's start with Clique. On input [x, y], a veri�er M for Clique �rst checks
whether x is an encoding of the form (G, k). If not, M rejects. It now
interprets the string y as a list of k nodes of G, for instance such an encoding
could be bin(i1)$ . . . $ bin(ik) where i1, . . . , ik are nodes of G. (Since y ∈
{0, 1}∗, we would then map for instance 0 7→ 00, 1 7→ 01, and $ 7→ 11.) If
y is not of this form, then M rejects. If y has this form, then M checks
whether {ij , ih} is an edge of G, 1 ≤ j < h ≤ k. If yes, then M accepts,
otherwise it rejects.

We have to show that there is a y such that [x, y] ∈ L(M) i� x = (G, k)
for some graph G that has a k-clique. Assume that x = (G, k) for some
graph G that has a k-clique. Then a list of the nodes that form a clique is
a proof that makes M accept. On the other hand, if G has no k-clique or x
is not a valid encoding, then no proof will make M accept.

For SAT and `SAT, an assignment to the variables that satis�es the
formula is a possible proof. For VC, a subset of the nodes of size less than
k that covers all edges is a possible proof. For Subset-Sum, it is the set of
indices I, for HC and TSP, it is the appropriate permutation. The rest of
the proof is now an easy exercise.
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Decision versus Veri�cation

Cum grano salis:

P is the class of languages L for which we can e�ciently decide
�x ∈ L?�.
NP is the class of languages L for which we can e�ciently verify
whether a proof for �x ∈ L!� is correct or not.
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NP contains a lot of interesting problems for which we would like to have
e�cient algorithms. But most researchers believe that the classes P and NP
do not coincide, that is, there is a language L ∈ NP such that L /∈ P. But we
are far from having a proof for this. Instead, we try to identify the �hardest�
languages in NP, the so-called NP-complete languages. If we can show that
a problem is NP-complete, then this is a strong indication that it does not
have a deterministic polynomial time algorithm.

23.1 Polynomial time reductions

De�nition 23.1 Let L,L′ ⊆ Σ∗.

1. A function f : Σ∗ → Σ∗ is called a many-one polynomial time reduc-
tion from L to L′ if f is polynomial time computable and

for all x ∈ Σ∗: x ∈ L ⇐⇒ f(x) ∈ L′.

2. L is (many-one) polynomial time reducible to L′ if there is a many-one
polynomial time reduction from L to L′. We denote this by L ≤P L

′.

Compared to recursive many-one reductions, the function f now shall be
polynomial time computable. The reason is that f shall preserve polynomial
time computability.

Lemma 23.2 If L ≤P L
′ and L′ ∈ P, then L ∈ P.

Proof. Let f be a polynomial time reduction from L to L′. Let M ′

be a polynomial time deterministic Turing machine with L′ = L(M ′). We
construct a polynomial time deterministic Turing machineM for L as follows:
On input x, M �rst computes f(x) and then simulates M ′ on f(x). M
accepts if M ′ accepts, and rejects otherwise.

First of all, L(M) = L, because x ∈ L ⇐⇒ f(x) ∈ L′. It remains to
show that M is indeed polynomial time bounded. To see this, assume that
f is p(n) time computable and M ′ is q(n) time bounded for polynomials p
and q. Since f is p(n) time computable, |f(x)| ≤ p(|x|) for all x ∈ Σ∗. Thus
M is q(p(n)) time bounded which is again a polynomial.

Lemma 23.3 ≤P is a transitive relation.
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198 23. Reduction and completeness

Proof. Let L ≤P L′ and L′ ≤P L′′. Let f and g be corresponding
reductions. We have to show that L ≤P L′′. We claim that g ◦ f is a
polynomial time reduction from L to L′′.

First of all, we have for all x ∈ Σ∗:

x ∈ L ⇐⇒ f(x) ∈ L′ ⇐⇒ g(f(x)) ∈ L′′.

It remains to show that g ◦ f is polynomial time computable. This is shown
as in the proof of Lemma 23.2.

Polynomial time many one reductions versus
recursive many one reductions

A many one reduction f from L to L′ has the following property:

x ∈ L ⇐⇒ f(x) ∈ L′ for all x ∈ {0, 1}∗.

Recursive many one reduction:

� f is Turing computable.

� f is total.

Polynomial time many one reduction:

� f is polynomial time computable. (This implies that f is total.)

Important properties of recursive many one reducibility:

� ≤ is transitive.

� If L ≤ L′ and L′ ∈ REC (or RE), then L ∈ REC (or RE)

Important properties of polynomial time many one reductions:

� ≤P is transitive.

� If L ≤P L
′ and L′ ∈ P, then L ∈ P.

23.2 NP-complete problems

De�nition 23.4 1. A language L is NP-hard if for all L′ ∈ NP, L′ ≤P L.

2. L is called NP-complete, if L is NP-hard and L ∈ NP.

Lemma 23.5 If L is NP-hard and L ∈ P, then P = NP.
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Proof. Let L′ ∈ NP. Since L is NP-hard, L′ ≤P L. By Lemma 23.2,
L′ ∈ P.

How can we show that a language is NP-hard? Once we have identi�ed
one NP-hard language, the following lemma provides a way to do so.

Lemma 23.6 If L is NP-hard and L ≤P L
′, then L′ is NP-hard.

Proof. Let L′′ ∈ NP. Since L is NP-hard, L′′ ≤P L. Since≤P is transitive,
L′′ ≤P L

′. Thus L′ is NP-hard, too.

It is the famous Cook�Karp�Levin theorem that provides a �rst NP-
complete problem. We defer the proof of it to the next chapters.

Theorem 23.7 (Cook�Karp�Levin) 1 SAT is NP-complete.

Excursus: Cook, Karp, or Levin?

In his original paper, Steve Cook did not talk about satis�ability at all, he always
talked about tautologies and showed that this problem was NP-complete. This
problem is co-NP-complete and it is a big open question whether it is also NP-
complete. So how can Steve Cook talk about NP and tautologies? The reason
is that he uses a coarser kind of reductions, Turing reductions, instead of many-
one reductions. But essentially all his Turing reductions are many-one. This was
pointed out by Richard Karp who also showed that many other problems are NP-
complete under many-one reductions.

Leonid Levin, a poor guy from the former Soviet Union, invented at the same
time as Steve Cook and Richard Karp a similar theory of NP-completeness. Since
the cold war was really cold at this time, western scientists became aware of his
�ndings more than a decade later. (He also did not get a Turing award.)

It is rather easy to show that our problem AFSAT is NP-complete.

Lemma 23.8 SAT ≤P AFSAT.

Proof. Let φ be a Boolean formula in CNF with n variables. We construct
an arithmetic formula Fφ such that every satisfying assignment a ∈ {0, 1}n of
φ is an assignment such that a(F ) = 1 and every non-satisfying assignment
is an assignment such that a(F ) = 0. (Note that we interpret 0 and 1 as
Boolean values and as integers.)

We construct this formula along the structure of formulas in CNF. Let `
be a literal. If ` = x, then F` = x. If ` = x̄, then F` = 1− x.

If c = `1 ∨ · · · ∨ `k is a clause, then Fc = 1 − (1 − F`1) · · · (1 − F`k). Fc
evaluates to 1 i� one of the F`i evaluates to 1.

1This theorem is usually called Cook's theorem. Less conservative authors call it Cook�
Levin theorem. The name is Cook�Karp�Levin theorem is my creation, use it at your own
risk.
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Finally, if φ = c1 ∧ · · · ∧ cm is a conjunction of clauses, then Fφ =
Fc1 · · ·Fcm . Fφ evaluates to 1 if all Fci evaluate to 1.

Thus, φ 7→ Fφ is the desired reduction. It is easy to see that this mapping
is polynomial time computable.

Invalid encodings

In the proof above assumed that the input to the reduction is
(an encoding of) a formula in CNF. However, the input can be
any string and need not be a valid encoding of a formula. In this
case, the input is not in SAT and the reduction needs to map it
to a string not in AFSAT. However, this can be easily achieved:
We �rst check whether the input is a valid encoding. This can be
done by assumption in polynomial time, since all our encodings
are �reasonable�. If yes, we apply our reduction form the proof.
Otherwise, we map the input to a �xed string not in AFSAT. We
will ignore this issue in all further proofs for the ease of presentation.

Let's start to show that the other problems introduced in this chapter
are all NP-complete.

Lemma 23.9 For all ` ≥ 3, `SAT is NP-complete. 2

Proof. We show that SAT ≤P `SAT. It su�ces to show this for ` = 3.
Let φ be a formula in CNF. We have to map φ to a formula ψ in 3-CNF
such that φ is satis�able i� ψ is satis�able.

We replace each clause c of length > 3 of φ by a bunch of new clauses.
Let c = `1 ∨ · · · ∨ `k with literals `κ. Let y1, . . . , yk−3 be new variables. (We
need new variables for each clause.) We replace c by

(`1∨`2∨y1)∧(ȳ1∨`3∨y2)∧· · ·∧(ȳk−4∨`k−2∨yk−3)∧(ȳk−3∨`k−1∨`k) (23.1)

If we do this for every clause of φ, we get the formula ψ. This transformation
is obviously polynomial time computable.

It remains to show that φ is satis�able i� ψ is satis�able. Let a be
some satisfying assignment for φ. We extend this assignment to a satisfying
assignment of ψ. Since a satis�es φ, for a given clause c, there is one literal,
say `i such that a(`i) = 1. If we assign to all yj with j < i−1 the value 1 and
to all other yj the value 0, then all clauses in (23.1) are satis�ed. Thus we
found a satisfying assignment for ψ. On the other hand, if ψ is satis�able,

2Our proof of the Cook-Karp-Levin theorem will actually show that 3SAT is NP-
complete. It is nevertheless very instructive to see the reduction from SAT to 3SAT.
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then any satisfying assignment b that satis�es all the clauses in (23.1) has
to set one `i to 1, since the yj 's can only satisfy at most k − 3 clauses but
(23.1) contains k − 2 clauses. Thus the restriction of b to the variables of φ
satis�es c and henceforth φ.

Exercise 23.1 Astonishingly, 2SAT ∈ P.

1. Given a formula φ in 2-CNF over variables x1, . . . , xn, we construct a
directed graph G = (V,E) as follows: V = {x1, . . . , xn, x̄1, . . . , x̄n} is
the set of all literals and for each clause `1 ∨ `2 we add the two edges
(¯̀

1, `2) and (¯̀
2, `1) to E. Show the following: φ is satis�able i� for all

1 ≤ ν ≤ n, there is no directed cycle that contains xν and x̄ν .

2. Conclude that 2SAT ∈ P.

Reducing SAT to `SAT was not too hard. (Or at least, it does not look
too unreasonable that one can �nd such a reduction.) Reducing SAT or `SAT
to Clique, for instance, looks much harder, since these problems seem to be
completely unrelated. First such reductions look like art, but nowadays it
has become routine work (with some exceptions) and there is a huge toolbox
available.

Lemma 23.10 `SAT ≤P Clique.

Proof. Let φ be a formula in 3-CNF. We may assume that each clause of
φ has exactly three literals by possibly repeating some literals. Let

φ = (`1,1 ∨ `1,2 ∨ `1,3) ∧ · · · ∧ (`m,1 ∨ `m,2 ∨ `m,3)

We have to construct a pair (G, k) such that G = (V,E) has a k-clique i� φ
is satis�able. We set V = {(1, 1), (1, 2), (1, 3), . . . , (m, 1), (m, 2), (m, 3)}, one
node for each literal of a clause. E is the set of all {(i, s), (j, t)} such that
i 6= j and `i,s 6= ¯̀

j,t. In other words, there is no edge {(i, s), (j, t)} i� `i,s
and `j,t cannot be simultaneously set to 1 (because one is the negation of
the other). Finally, we set k = m.

If φ is satis�able, then there is a satisfying assignment for φ, i.e., an
assignment that assigns to at least one literal of each clause the value 1. Let
`1,s1 , . . . , `m,sm be these literals. Then (1, s1), . . . , (m, sm) form a clique of
size m in G.

Conversely, ifG has a clique of size k, then it is of the form (1, s1), . . . , (m, sm),
because there is no edge between (i, s) and (i, t) for s 6= t. Then we can set
all the literals `1,s1 , . . . , `m,sm to 1 and hence φ is satis�able.

The mapping φ 7→ (G, k), is obviously polynomial time computable.

Lemma 23.11 Clique ≤P VC.
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Proof. For a graph G = (V,E), let Ḡ = (V,
(
V
2

)
\E) be its complement,

i.e, e is an edge of G i� e is not an edge of Ḡ.
Let C be a clique of G. We will show below that V \C is an vertex cover

of Ḡ. Conversely, if D is a vertex cover of Ḡ, then V \D is a clique of G.
In particular, G has a clique of size at least k i� Ḡ has an vertex cover of

size at most n− k. Thus (G, k) 7→ (Ḡ, n− k) is the desired reduction. This
reduction is of course polynomial time computable.

If C is a clique of G, then there are no edges between nodes of C in Ḡ.
Thus the nodes of V \ C cover all edges of Ḡ, since every edge in Ḡ has at
least one node not in C. Conversely, if D is a vertex cover of Ḡ, then there
are no edges between then nodes of V \D, because otherwise D would not
be a vertex cover. Thus V \D is a clique in G.

Lemma 23.12 3SAT ≤P Subset-Sum.

The proof of this lemma is more complicated; we defer it to the next
chapter.

Exercise 23.2 Consider the following dynamic programming approach to
Subset-Sum. Let x1, . . . , xn, b be the given instance. We de�ne a predicate
P (ν, β) for 1 ≤ ν ≤ n and 0 ≤ β ≤ b by

P (ν, β) =

{
1 if there is an I ⊆ {1, . . . , ν} with

∑
i∈I xi = β

0 otherwise

1. Show that P (ν, β) = P (ν − 1, β) ∨ P (ν − 1, β − xν).

2. Design an algorithm with running time O(nb) for Subset-Sum.

3. Does this show that P = NP? (See also Chapter 27.)

Lemma 23.13 3SAT ≤P HC.

This proof is again deferred to the next section.

Lemma 23.14 HC ≤P TSP.

Proof. Let G = (V,E) be an input of HC. An input of TSP is a weighted

complete graph H = (V,
(
V
2

)
, w). We assign to edges from G weight 1 and

to �nonedges� weight 2, i.e,

w(e) =

{
1 if e ∈ E
2 if e /∈ E

By construction, G has a Hamiltonian cycle i� H has a Hamiltonian cycle
of weight n.
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Theorem 23.15 Clique, VC, Subset-Sum, HC, TSP, SAT, 3SAT, and
AFSAT are NP-complete.

The proof of the theorem follows from the lemmas in this chapter.

SAT

AFSAT

3SAT

HC TSP

Clique VC

Subset-Sum

Figure 23.1: The reduction scheme. An arrow from A to B means that we
proved A ≤P B.
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24 More reductions

In this chapter, we construct the two missing reductions from the last chap-
ter. They are more complicated than the ones in the last chapter, but now
you should be old enough to understand them. When you see such reduc-
tions for the �rst time, they look like complicated magic, but constructing
them has become a routine job, with some notable exceptions.

24.1 Subset-Sum

We �rst start with the proof of Lemma 23.12. As Exercise 23.2 suggests, the
instances created by the reduction will use large numbers, that is, numbers
whose size is exponential in the number of clauses of the Boolean formula
(or equivalently, the length of the binary representation will we polynomial
in m).

Proof of Lemma 23.12. Let φ be a formula in 3-CNF. We have to con-
struct an instance of Subset-Sum, i.e., numbers a1, . . . , at, b such that there
is a subset I ⊆ {1, . . . , t} with

∑
i∈I ai = b i� φ is satis�able.

Let x1, . . . , xn be the variables of φ. Let c1, . . . , cm be the clauses of φ.
For each literal ` we will construct a number a(`) as follows: The number
a(`) is of the form a0(`)+10n ·a1(`). The �rst part a0(`) is the variable part,
the second part a1(`) is the clause part. For a variable xν , let cµ1 , . . . , cµsν
be the clauses in which it appears positively, or in other words, cµ1 , . . . , cµsν
are the clauses that contain the literal xν . Then

a(xν) = 10ν−1 + 10n(10µ1−1 + · · ·+ 10µsν−1).

For a literal x̄ν , let cµ̄1 , . . . , cµ̄s̄ν are the clauses that contain the literal x̄ν .
Then

a(x̄ν) = 10ν−1 + 10n(10µ̄1−1 + · · ·+ 10µ̄s̄ν−1).

Choosing a(xν) indicates that we set xν to 1. Choosing a(x̄ν) indicates that
we set x̄ν to 1, i.e., xν to 0. Of course we can set xν either to 1 or to 0. This
means that we shall only be able to select one of a(xν) and a(x̄ν). Thus in
the �target number� b = b0 + 10nb1, be set b0 = 1 + 10 + · · ·+ 10n−1.

The numbers a(xν) and a(x̄ν) have digits 0 or 1. For each position 10i,
there are at most 3 numbers that have digit 1 at position 10i. In the variable
part, this is clear, since only a(xi) and a(x̄i) have a 1 in position 10i. In
the clause part, this is due to the fact that each clause consists of at most
three literals. Since our base 10 is larger than 3, in the sum of any subset
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of a(xν), a(x̄ν), 1 ≤ ν ≤ n, no carry can occur. (We could have chosen a
smaller base but 10 is so convenient.) This means that any sum that yields
b0 in the lower n digits either contains a(xν) or a(x̄ν), 1 ≤ ν ≤ n. This
ensures consistency, that means, we can read o� a corresponding assignment
from the chosen numbers.

Finally, we have to ensure that the assignment is also satisfying. This
is done by choosing b1 properly. Each clause should be satis�ed, so a �rst
try would be to set b1 = 1 + 10 + · · · + 10m−1. But a clause cµ could be
satis�ed by two or three literals, in this case the digit of 10n−1+µ is 2 or
3. The problem is that we do not know in advance whether it is 1, 2, or 3.
Therefore, we set b1 = 3(1+10+ · · ·+10m−1) and introduce ��ller numbers�
cµ,1 = cµ,2 = 10n−1+µ, 1 ≤ µ ≤ m. We can use these �ller numbers to reach
the digit 3 in position 10n−1+µ. But to reach 3, at least one 1 has to come
from an a(xν); thus the clause is satis�ed if we reach 3.

Overall, the considerations above show that φ has a satisfying assignment
i� a subset of a(xν), a(x̄ν), 1 ≤ ν ≤ n, and cµ,1, cµ,2, 1 ≤ µ ≤ m, sums up to
b. Thus the reduction above is a polynomial time many one reduction from
3SAT to Subset-Sum.

24.2 Hamiltonian Cycle

In order to prove Lemma 23.13, we introduce an intermediate problem, di-
rected Hamiltonian cycle. Here we consider directed graphs G = (V,E). The
edges are now ordered pairs, i.e., elements of V × V . We say that (u, v) is
an edge from u to v. Let V = {v1, . . . , vn}. Now a (directed) Hamiltonian
cycle is a permutation such that (vπ(i), vπ(i+1)) ∈ E for all 1 ≤ i < n and
(vπ(n), vπ(1)) ∈ E. That is, it is a cycle that visist each node exactly once
and all the edges in the cycle have to point in the same direction.

Dir-HC is a generalization of HC. To each undirected graph H corre-
sponds a directed one, G, in a natural way: Each undirected edge {u, v} is
replaced by two directed ones, (u, v) and (v, u). Any Hamiltonian cycle in
G induces a Hamiltonian cycle in H in a natural way. Given H, G can be
computed easily. Thus HC ≤P Dir-HC. But we can also show the converse.

Lemma 24.1 Dir-HC ≤P HC.

Proof. Let G = (V,E) be a directed graph. We construct a undirected
graph G′ = (V ′, E′) such that G has a Hamiltonian cycle i� G′ has a Hamil-
tonian cycle.

G′ is obtained from G as follows: For every node v ∈ V , we introduce
three nodes vin, v, vout and connect vin with v and vout with v.

1 Then for

1Such a thing is usually called a gadget. We replace a node or edge (or something like
this) by a small graph (or something like this). The term gadget is used in an informal
way, there is no formal de�nition of a gadget.
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v

u1

u2

...

us

w1

w2

...

wt

vvin vout

u1,out

u2,out

...

us,out

w1,in

w2,in

...

wt,in

Figure 24.1: The gadget for the reduction: u1, . . . , us are the nodes such that
there is an edge (ui, v) ∈ E, that is, an edge entering v. The nodes w1, . . . , wt
are the nodes such that there is an edge (v, wj) ∈ E, that is, an edge leaving
v. The two lists u1, . . . , us and v1, . . . , vt need not be disjoint. The righthand
side show the gadget. Every node is replaced by three nodes, v, vin, vout.
For every directed edge (x, y), we add the undirected edge {xout, yin}.

a1

b1

c1

a2

b2

c2

Figure 24.2: The gadget for the reduction of 3SAT to Dir-HC.

every directed edge (x, y) ∈ E, we add the undirected edge {xout, yin} to E′.
Figure 24.1 shows this construction.

Given G, we can construct G′ in polynomial time. Thus what remains to
show is the follow: G has a Hamiltonian cycle i� G′ has a Hamiltonian cycle.
Assume that G has a Hamiltonian cycle C. Then we get a Hamiltonian cycle
of G′ as follows. For every edge (x, y) of C, we take the edge {xout, yin}.
Furthermore We add the {vin, v} and {v, vout}. This gives a Hamiltonian
cycle of G′.

For the converse direction, observe that every node in a Hamiltonian cycle
is incident with two edges. Since every node v is only incident with two edges
in G′, the edges {vin, v} and {v, vout} have to be in a Hamiltonian cycle in
G′. The other edges of the Hamiltonian cycle in G′ induce a Hamiltonian
cycle in G.

For 3SAT, we need a more complicated gadget.

Lemma 24.2 Let G be the graph in Figure 24.2.

1. For every nonempty subset S ⊆ {(a1, a2), (b1, b2), (c1, c2)}, there are
node disjoint path from s to t for all (s, t) ∈ S such that all inner
nodes of G lie on one of these path.

© Markus Bläser 2007�2021



24.2. Hamiltonian Cycle 207

a1

b1

c1

a2

b2

c2

a1

b1

c1

a2

b2

c2

a1

b1

c1

a2

b2

c2

Figure 24.3: The paths connecting the nodes in S.

a1

b1

c1

a2

b2

c2

a1

b1

c1

a2

b2

c2

a1

b1

c1

a2

b2

c2

Figure 24.4: No matter how we connect a1 with b2, there are always inner
nodes left that are not covered and cannot be covered by other paths.

2. For any other subset T ⊆ {a1, b1, c1}×{a2, b2, c2}, no such paths exist.

Proof. We start with the �rst part: Figure 24.3 shows these paths in the
case of one, two, or three pairs. Only the number of pairs in S matters, since
the structure of the gadget G is invariant under simultaneous cyclic shifts of
the nodes a1, b1, c1 and a2, b2, c2.

For the second part consider any other pair. Since the gadget is invariant
under cyclic shifts, it is enough to consider the pair (a1, b2) and the pair
(a2, b1). Figure 24.4 shows all possibilities how to connect a1 with b2. In
each case, inner nodes are not covered and it is not possible to cover all of
them with other paths. The other pair is an exercise.

Exercise 24.1 Draw the corresponding �gures for the pair (a2, b1).

Lemma 24.3 3SAT ≤P Dir-HC.

Proof. For this proof, we have to do the following: Given a formula φ
in 3-CNF, we have to map it to a directed graph G (depending on φ) such
that φ is satis�able i� G has a Hamiltonian cycle. Every variable of φ will
be represented by a node, every clause will be represented by a gadget from
Figure 24.2.

Let x1, . . . , xn be the variables of φ and c1, . . . , cm be its clauses. We
call the nodes representing the variables x1, . . . , xn, too. There will be two
paths from xi to xi+1 for each 1 ≤ i < n and two paths from xn to x1. One
corresponds to the fact that xi is set to 1, the other one corresponds to the
case that xi is set to 0. Let Cj be the gadget that represents cj . Assume
that xi occurs positively in clauses cj1 , . . . , cjs and negatively in the clauses
ck1 , . . . , ckt . Then an edge goes from xi to Cj1 . If it is the �rst literal in cj1 ,
then this edge goes to the node a1, if it is the second, then it enters through
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b1, and if it is the third, it uses c1. Then there is an edge from Cj1 to Cj2 .
It leaves Cj1 through the node corresponding to the entry node. I.e., if we
entered Cj1 through a1, we also leave to through a2, and so on. Finally,
the edge leaving Cjs goes to xi+1. The second paths is constructed in the
same manner and goes through Ck1 , . . . , Ckt . Every clause gadget appears
on one, two, or three path, depending on the number of its literals. Finally,
we remove all the ai, bi, and ci nodes, i = 1, 2. For each such node, if there
is one edge going into it and a second one leaving it, then we replace these
two edges by one edge going from the start node of the �rst edge to the end
node of the second edge. When such a node is only incident with one edge,
we remove it and its edge completely.

Figure 24.5 shows an example. x2 is the �rst literal of c3, the third of c5,
and the �rst of c8. x̄1 is the second literal of c2.

Let G be the graph constructed from φ. G can certainly constructed in
polynomial time. So it remains to show that φ has a satisfying assignment
i� G has a Hamiltonian cycle.

For the �⇒�-direction, let a be a satisfying assignment of φ. We construct
a Hamiltonian cycle as follows. If a(xi) = 1, we use all the edges of the paths
to xi+1 that contain the clauses in which xi occurs positively. In the other
case, we use the other path. Since a is a satisfying assignment, at least one
of the inner node of Ci that were right of a1, b1, or c1 is incident with one of
these edges. And by construction, also the corresponding inner nodes that
were left of a2, b2, or c2 are. By the �rst part of Lemma 24.2, we can connect
the corresponding pairs such that all inner nodes of the gadget lie on a path.
This gives a Hamiltonian cycle of G.

For the converse direction, let H be a Hamiltonian cycle of G. By the
second part of Lemma 24.2, when the cycle enters a clause gadget through
the inner node that was right to a1, it leaves it through the inner node left
to a2 and so forth. This means that the next variable node that the cycle
visits after xi is xi+1. Since only one edge can leave xi, the cycle either goes
through the path with positive occurences of xi or through the path with
negative occurences of xi. In the �rst case, we set xi to 1, in the second to 0.
Since H is a Hamiltonian cycle, it goes through each clause gadget at least
once. Hence this assignment will be a satisfying assignment.

Corollary 24.4 3SAT ≤P HC.
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x2 x3

a1

b1

c1

a2

b2

c2

C3

a1

b1

c1

a2

b2

c2

C5

a1

b1

c1

a2

b2

c2

C8

a1

b1

c1

a2

b2

c2

C2

x2 x3

C3 C5 C8

C2

Figure 24.5: An example. The variable x2 appear positively in the clauses
c3, c5, and c8 in the �rst, third, and �rst position. It appears negatively in
c2 in the second position. The other ai, bi, and ci nodes of the gadges lie on
paths between other variables. Next, all the ai, bi, and ci nodes, i = 1, 2 are
removed and the two edges incident to them are replaced by one.
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V Proof of the Cook�Karp�Levin

theorem

Reducing 3SAT to Subset-Sum, for instance, was a hard job, because the
problems look totally di�erent. To show that SAT is NP-hard, we have to
reduce any language in NP to SAT. The only thing that we know about such
an L is that there is a polynomially time bounded nondeterministic Turing
machine M with L(M) = M . Thus we have to reduce the question whether
a Turing machineM accepts a word x to the question whether some formula
in CNF is satis�able. (This makes 3SAT ≤P Subset-Sum look like a picnic.)
The general reduction scheme looks as follows:

Turing machines
↓

oblivious Turing machines
↓

Boolean circuits
↓

CSAT
↓

SAT

As an intermediate concept, we introduce Boolean circuits. We show
that Boolean circuits can simulate Turing machines. To do so, we have to
�rst make the Turing machine oblivious, that means, that on all inputs of a
speci�c length, the Turing machine moves its heads in the same way. Once
we know that Boolean circuits can simulate Turing machine, it is rather
easy to show that the circuit satis�ability problem CSAT (given a circuit C,
does it have a satisfying assignment?) is NP-hard. Lastly, we show that
CSAT ≤P SAT.

V.1 Boolean functions and circuits

We interpret the value 0 as Boolean false and 1 as Boolean true. A function
{0, 1}n → {0, 1}m is called a Boolean function. n is its arity, also called the
input size, and m is its output size.

A Boolean circuit C with n inputs and m outputs is an acyclic digraph
with ≥ n nodes of indegree zero and m nodes of outdegree zero. Each node
has either indegree zero, one or two. If its indegree is zero, then it is labeled
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V.1. Boolean functions and circuits 211

with x1, . . . , xn or 0 or 1. Such a node is called an input node. If a node has
indegree one, then it is labeled with ¬. Such a node computes the Boolean
negation. If a node has indegree two, it is labeled with ∨ or ∧ and the
node computes the Boolean or or Boolean and, respectively. The nodes with
outdegree zero are ordered so that we can speak about the �rst output bit,
the second output bit etc. The nodes in a Boolean circuit are sometimes
called gates, the edges are called wires.

The depth of a node v of C is the length of a longest path from a node
of indegree zero to v. (The length of a path is the number of edges in
it.) The depth of v is denoted by depth(v). The depth of C is de�ned as
depth(C) = max{depth(v) | v is a node of C}. The size of C is the number
of nodes in it and is denoted by size(C).

Such a Boolean circuit C computes a Boolean function {0, 1}n → {0, 1}m
as follows. Let ξ ∈ {0, 1}n be a given input. With each node, we associate a
value val(v, ξ) ∈ {0, 1} computed at it. If v is an input node, then val(v, ξ) =
ξi, if v is labeled with xi. If v is labeled with 0 or 1, then val(v, ξ) is 0 or
1, respectively. This de�nes the values for all nodes of depth 0. Assume
that the value of all nodes of depth d are known. Then we compute val(v, ξ)
of a node v of depth d + 1 as follows: If v is labeled with ¬ and u is the
predecessor of v, then val(v, ξ) = ¬ val(u, ξ). If v is labeled with ∨ or ∧
and u1, u2 are the predecessors of v, then val(v, ξ) = val(u1, ξ) ∨ val(u2, ξ)
or val(v, ξ) = val(u1, ξ) ∧ val(u2, ξ). For each node v, this de�nes a function
{0, 1}n → {0, 1} computed at v by ξ 7→ val(v, ξ). Let g1, . . . , gm be the
functions computed at the output nodes (in this order). Then C computes a
function {0, 1}n → {0, 1}m de�ned by ξ 7→ g1(ξ)g2(ξ) . . . gm(ξ). We denote
this function by C(ξ).

The labels are taken from {¬,∨,∧}. This set is also called standard basis.
This standard is known to be complete, that is, for any Boolean function
f : {0, 1}n → {0, 1}m, there is Boolean circuit (over the standard basis) that
computes it. For instance, the CNF of a function directly de�nes a circuit
for it. (Note that we can simulate one Boolean and or or of arity n by n− 1
Boolean and or or of arity 2.)

Boolean circuits can be viewed as a model of parallel computation, since
a node can compute its value as soon as it knows the value of its predecessor.
Thus, the depth of a circuits can be seen as the time taken by the circuit
to compute the result. Its size measures the �hardware� needed to built the
circuit.

Exercise V.1 Every Boolean function f : {0, 1}n → {0, 1} can be computed
by a Boolean circuit of size 2O(n). (Remark: This can be sharpened to (1 +
ε) · 2n/n for any ε > 0. The latter bound is tight: For any ε > 0 and any
large enough n, there is a Boolean function f : {0, 1}n → {0, 1} such that
every circuit computing f has size (1− ε)2n/n.)
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V.2 Uniform families of circuits

There is a fundamental di�erence between circuits and Turing machines.
Turing machines compute functions with variable input length, e.g., {0, 1}∗ →
{0, 1}∗. Boolean circuits only compute a function of �xed size {0, 1}n →
{0, 1}m. To overcome the problem that circuits compute functions of �xed
length, we will introduce families of circuits.

In the following, we will only look at Boolean circuits with one output
node, i.e., circuits that decide languages. Most of the concepts and results
presented in the remainder of this chapter also work for circuits with more
output nodes, that is, circuits that compute functions.

De�nition V.1 1. A sequence C = (Cn) of Boolean circuits such that
Ci has i inputs is called a family of Boolean circuits.

2. C is s size bounded and d depth bounded if size(Ci) ≤ s(i) and depth(Ci) ≤
d(i) for all i.

3. C computes the function {0, 1}∗ → {0, 1} given by x 7→ C|x|(x). Since
we can interpret this as a characteristic function, we also say that C
decides a language. We write L(C) for this language.

Families of Boolean circuits can decide nonrecursive languages, in fact
any L ⊆ {0, 1}∗ is decided by a familiy of Boolean circuits. To exclude such
phenomena, we put some restrictions on the families.

De�nition V.2 1. A family of circuits is called s space and t time con-
structible, if there is an s space bounded and t time bounded determin-
istic Turing machine that given input 1n writes down an encoding of
Cn.

2. A family of circuits C is called polynomial time uniform if is is con-
structible in time polynomial in n.

Polynomial time uniform families of circuits always have polynomially
bounded size.

V.3 Simulating Turing machines by families of cir-

cuits

If we want to simulate Turing machines by circuits, there is a problem. For
two di�erent inputs of the same length n, a Turing machine can do completely
di�erent things, on the one input, it could move to the left, on the other it
could move to the right. But the same two inputs are fed into the circuit Cn
which is static and essentially does the same on all inputs. How can such a
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poor circuit simulate the behaviour of the Turing machine on all inputs of
length n. The idea is to tame the Turing machine.

De�nition V.3 A Turing machine is called oblivious if the movement of
the heads are the same for all inputs of length n. (In particular, it performs
the same number of steps on each input of length n.)

Lemma V.4 Let t be time constructible. For every t time bounded deter-
ministic Turing machine M , there is an oblivious O(t2) time bounded 1-tape
deterministic Turing machine S with L(M) = L(S).

Proof. First, we replace the Turing machine M by a Turing machine
that uses a one-sided in�nite tape. S is basically the construction from
Lemma 20.2. Since t is time constructible, it is also space constructible. On
input x, S �rst marks t(|x|) cells and then simulates M as described in the
proof of Lemma 20.2.

To simulate one step of M , it makes a sweep over all the marked t(|x|)
cells and not just those visisted by M so far. Furthermore, S halts after
exactly simulating t(|x|) steps ofM . IfM halted before, then S just performs
some dummy steps that do not change anything. In this way, S becomes
oblivious.

Lemma V.5 Let M be a polynomial time bounded oblivious 1-tape deter-
ministic Turing machine with input alphabet {0, 1}. Then there a polynomial
time uniform family of circuits C with L(M) = L(C).

Proof. Let M = (Q,Σ,Γ, δ, q0, Qacc). Let M be t time bounded. We can
assume that the set of states of M is a subset of {0, 1}d for some constant
d. 0 . . . 0 shall be the start state. Since a circuit can only deal with values
0 and 1, we will represent the tape alphabet by words from {0, 1}c for some
constant c. 0 will be mapped to 0 . . . 0 and 1 will be mapped to 1 . . . 1. (This
choice is fairly arbitrary and does not really matter.)

We �rst built a circuitD which gets an input from {0, 1}d×{0, 1}c, a state
of M and an encoding of a symbol from the tape alphabet, and produces
as output again an element from {0, 1}d × {0, 1}c. If we feed (the encoding
of) (q, γ) in to D, we get the output (q′, γ′) where δ(q, γ) = (q′, γ′, r) for
some r ∈ {L, S,R}, that is, D computes the transition function (except the
direction).

The circuit Cn now works in layers. Each layer consists of d edges that
carry the state of M and of t(n) �packets� of c edges, one packet for each
cell that M potentially can visit. Between the ith and the (i+ 1)th layer we
place a copy of D; the d edges that correspond to the state and the c edges
that correspond to the cell from which M reads a symbol in step i. Since
M is oblivious, this cell is independent of the input. Into the �rst layer, we
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214 V. Proof of the Cook�Karp�Levin theorem

feed the input bits into these packets of edges that correspond to the n cells
that contain the input. In all other packets, we feed constants that encode
the blank, say 0 . . . 01. In the edges that correspond to the state we feed
the constants that that encode that start state, that is, 0 . . . 0. After the
last layer, we feed the edges that carry the state into a small circuit E that
outputs 1, i� the encoded state is accepting and 0 otherwise. See Figure V.1
for a sketch of Cn.

On input 1n, a Turing machine N can construct Cn as follows: Cn has a
very regular structure, so N constructs it layer by layer. The circuit D can
be �hard-wired�1 into N , since the size of D is �nite. The only problem is to
�nd out where to place D. But since M is oblivious, it su�ces to simulate
M on 1n. This simulation also gives us the number of layers that Cn has,
namely the number of steps that M performs.

SinceM is polynomial time bounded, the family (Cn) is polynomial time
uniform.

V.4 The proof

Before we show that SAT is NP-hard, we show that a more general problem
is NP-hard, the circuit satis�ability problem CSAT which is the following
problem: Given (an encoding of) a Boolean circuit C, decide whether there
is a Boolean vector ξ with C(ξ) = 1.

Theorem V.6 CSAT is NP-hard

Proof. Let L ∈ NP and letM be a polynomial time veri�er for it. We can
assume thatM is oblivious. Let p be the polynomial that bounds the length
of the certi�cates. We can also assume that all certi�cates y such that M
accepts [x, y] have length exactly p(|x|). To do so, we can for instance replace
each 0 of y by 00 and each 1 by 11 and pad the certi�cate by appending 01.
This doubles the length of the certi�cates, which is �ne.

We saw in Lemma V.5, that for any oblivious polynomial time bounded
Turing machine, there is a polynomial time uniform family of polynomial
size circuits Ci that decides the same language.

Now our reduction works as follows: Since for each x of length n, all
interesting certi�cates (certi�cates such that M might accept [x, y]) have
the same length, all interesting pairs [x, y] have the same length `(n), which
depends only on n. Given x, we construct C`(|x|). Then we construct a
circuit with n + p(n) inputs that given x and y computes [x, y] and use its
output as the input to C`(|x|) Finally, we specialize the inputs belonging to
the symbols of the �rst part of the input to x. Our reduction simply maps
x to this circuit.

1This means that there is a �subroutine� in N that prints D on the tape
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D

D

D

D

...

0 1 0 �

0 1x1 x2 x30

E

Figure V.1: The circuit Cn that simulates the Turing machine on inputs of
length n. At the top, the tape of the Turing machine is shown. The input
is 010. The Turing machine moves its head two times to the right during its
�rst two steps. The states are a subset of {0, 1}3 and the symbols of the tape
alphabet Γ are encoded as words from {0, 1}2. Since 0 ∈ Γ is encoded by 00
and 1 ∈ Γ is encoded by 11, we just can duplicate the input node xν and
feed the two edges into D. A blank is represented by 01. There are �edges�
at the bottom that do not end in any nodes. They actually do not appear in
Cn, we have just drawn them to depict the regular structure of the layers.
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216 V. Proof of the Cook�Karp�Levin theorem

By construction, this new circuit C ′ has an input y with C ′(y) = 1 if
there is a y such that M([x, y]) = 1. Thus the mapping x 7→ C ′ is a many
one reduction of L to CSAT. It is also polynomial time, since C can be
constructed in polynomial time.

Theorem V.7 SAT is NP-hard.

Proof. It is su�cient to show CSAT ≤ SAT. Let C be the given input
circuit and let s be its size. Note that we cannot just expand a circuit into
an equivalent formula, since this may result in an expontential blow up.

Instead, we introduce new input variables a1, . . . , as. The idea is that
aj is the output of the jth gate of C. We will construct a formula by
constructing a formula in CNF for each gate. The �nal formula will be the
conjunction of these small formulas.

Let gate j be an input gate. We can assume that each variable in C is
assigned to exactly one input gate. If the gate is labeled with a variable, we
do nothing. aj models this variable. If j is labeled with a constant, then
we add the clause aj or ¬aj . This forces aj to be 1 or 0, respectively, in a
satisfying assignment.

If gate j is the negation of gate i, our formula contains the expression

(ai ∨ aj) ∧ (¬ai ∨ ¬aj).

These formula is satis�ed i� ai and aj get di�erent values.
If gate j is the conjunction of gates h and i, then we add the expression

(¬aj ∨ ai) ∧ (¬aj ∨ ah) ∧ (aj ∨ ¬ai ∨ ¬ah). (V.1)

In a satisfying assignment, either aj is 0 and at least one of ai and ah is 0
or all three are 1.

There is a similar expression for Boolean or.
Finally, we have the additional expression as, where s is the output gate.

This forces the output to be 1.
Now if there is an input such that C(x) = 1, then by construction,

we get a satisfying assignment by giving the variables a1, . . . , as the values
computed at the corresponding gates. Conversely, any satisfying assignment
also gives an assigment to the input variables of C such that C evaluates to
one.

Remark V.8 The formula constructed in the proof above is actually in 3-
CNF. So we directly get that 3SAT is NP-complete.

Exercise V.2 Construct a similar expression as in (V.1) for the Boolean
or.
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25.1 Gödel numberings for Turing machines

We want to �nd a mapping that maps Turing machines to strings in {0, 1}∗.
Let M = (Q, {0, 1},Γ, δ, q0, Qacc) be a k-tape Turing machine. We can as-
sume that Q = {0, 1, . . . , s} and Γ = {0, 1, . . . , `}. We assume that ` is the
blank.

We can encode a state q by bin(q) and a symbol γ by bin(γ). The fact
that

δ(q, γ1, . . . , γk) = (q′, γ′1, . . . , γ
′
k, r1, . . . , rk)

can be encoded by

[bin(q),bin(γ1), . . . ,bin(γk), bin(q′),bin(γ′1), . . . ,bin(γ′k), r̂1, . . . , r̂k]

where

r̂κ =


00 if rκ = S

10 if rκ = L

01 if rκ = R

[., .] denotes (one of) the pairing functions discussed in Section 18.1.3. It is
extended to larger tuples as expected:

[a1, . . . , am] := [a1, [a2, . . . , [am−1, am]]].

If δ(q, γ1, . . . , γk) is unde�ned, then we encode this by

[bin(q), bin(γ1), . . . ,bin(γk),bin(s+ 1), ε, . . . , ε, ε, . . . , ε]

The second part of the tuple is a dummy value, the non-existing state s+ 1
is used for saying that the value is unde�ned.

We construct a mapping gödTM from the set of all Turing machines to
{0, 1}∗ by building a large pair consisting of:

� bin(k), the number of tapes,

� bin(s+ 1), the size of Q,

� bin(`+ 1), the size of Γ,

� the encodings of δ(q, γ1, . . . , γk), q ∈ Q, and γ1, . . . , γk ∈ Γ, in lexico-
graphic order,
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218 25. A universal Turing machine

Input: i ∈ {0, 1}∗
Output: accept, if i ∈ im gödTM , reject otherwise

1. Extract the values k, s, and r from i.

2. From these values, CTM can compute the size and the number
of tuples encoding the transition function.

3. Test whether all these tupels are in ascending order, whether
they have the correct number of entries, and whether the entries
are all in the given bounds.

4. Finally check whether q0 and whether the accepting states are
between 0 and s and whether they are in ascending order and
every state is only listed once.

5. If one of these conditions is violated, then reject. Otherwise
accept.

Figure 25.1: The Turing machine CTM .

� bin(q0), the start state,

� bin(|Qacc|), the number of accepting states,

� bin(q), q ∈ Qacc, in ascending order.

IfM is supposed to compute a function (instead of recognizing some language
L ⊆ {0, 1}∗), then we indicate this by not giving any accepting states. It is
clear that gödTM is an injective mapping. In contrast to WHILE programs,
gödTM is not a bijection. This is no problem, since the image of gödTM is
decidable.

Constructing the Turing machine CTM that computes the characteristic
function of im gödTM is rather easy. An index i ∈ im gödTM is just a con-
catenation of some tupels, we just have to check whether they have the right
form.

25.2 A universal Turing machine

Finally, we construct the universal Turing machine UTM . UTM simulates a
given Turing machine M step by step. The biggest problem for constructing
a universal Turing machine UTM is that is has a �xed number of tapes, a
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�xed working alphabet, and a �xed number of states. To simulate M , we
encode the symbols of the work alphabet of M in binary. We store all k
tapes of M on one tape of UTM , the second one, say. To do so, we build
blocks. If in some step, the ith cells of the k tapes ofM contain the symbols
i1, . . . , ik, then the ith block is

# bin(i1)# bin(i2)# . . .# bin(ik).

To the right of this block, there is the block corresponding to the (i + 1)th
cells ofM , to left the one corresponding to the (i−1)th cells ofM . Between
two such blocks, UTM writes $ as a separator. So the k tapes of M are
�interleaved�.

Of course, UTM has to bring its second tape into this form. In the
beginning, it initializes its second tape by writing the blocks

# bin(xj)# bin(`)# . . .# bin(`)

for j = 1, . . . , n on it where x = x1x2 . . . xn denotes the input for M . Recall
the ` is the blank of M . Whenever M enters a cell that has not been visited
before on any tape, then UTM will enter a cell that contains a blank (of
UTM ). UTM then �rst creates a new block that consists solely of blanks (of
M).

UTM has only one head on its second tape. But M has k heads on its k
tapes. UTM remembers that the head of the jth tape of M is standing on
the ith cell by replacing the jth # of the ith block by a ∗.

One can prove the correctness of UTM by induction on the number of
steps of M . This is not hard, but quite some slave work. We get the
following result.

Theorem 25.1 There is a Turing machine UTM that, given a pair [g, x]
with g ∈ im gödTM and x ∈ {0, 1}∗, computes ϕgöd−1

TM (g)(x).

Exercise 25.1 Show that the constructed Turing machine UTM is correct.
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Input: [g, x] with g ∈ im gödTM and x ∈ {0, 1}∗
Output: ϕgöd−1

TM (g)(x)

1. UTM copies the start state to the third tape.

2. UTM copies the input x from the �rst tape to the second tape
as described above.
It replaces all # of the �rst block by ∗.

3. UTM moves the head to the �rst symbol of the leftmost block.

4. While the transition function is not unde�ned

(a) UTM goes to the right.

(b) Whenever it �nds a ∗, it copies the following number in
binary to the fourth tape.

(c) If UTM reaches the right end of tape 2, then it looks up
the tuple of δ that corresponds to the current state (on
tape 3) and the symbols copied to tape 4.

(d) UTM replaces the state on tape 3 by the new state.

(e) UTM goes to the left

(f) Whenever UTM �nds a ∗, it updates the corresponding
cells and moves the ∗ to its new position.

5. If M := göd−1
TM (g) is supposed to compute a function, then

UTM copies the content of tape 2 that corresponds to the �rst
tape of M back to tape 1 and stops.

6. If M is supposed to decide a language, then M accepts if the
current state on tape 3 is in the list of accepting states of M ,
otherwise it rejects.

Figure 25.2: The universal Turing machine UTM
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Hierarchies

Is more space more power? Is more time more power?
The answer is �yes� provided that the space and time bounds behave
well, that is, they shall be constructible.

In the case of time �more� means �somewhat more� and not just �more�

(see Theorem 20.7).

26.1 A technical lemma

Lemma 26.1 Let s1, s2, t1, t2 : N → N with s1 = o(s2) and t1 = o(t2).
Assume that s2(n) ≥ log n and t2(n) ≥ (1 + ε)n for all n and some ε > 0.
Let s2 be space constructible and t2 be time constructible.

1. There is a deterministic Turing machine C1 that is s2 space bounded
such that for every s1 space bounded 1-tape Turing machineM , L(C1) 6=
L(M).

2. There is a deterministic Turing machine C2 that is t2 time bounded
such that for every t1 time bounded 1-tape Turing machineM , L(C2) 6=
L(M).

Proof overview: The proof is by diagonalization. When we constructed a
function that is not WHILE (or Turing) computable, we just constructed a
function whose value on i was di�erent from fi(i). Here the function that
we construct has to be computable in space s2 and time t2, respectively,
which complicates the construction somewhat. We use the universal Turing
machine to compute the values fi(i) and then diagonalize.

Proof. Let g be the Gödel number of some 1-tape Turing machine M .
It is easy to modify the universal Turing machine in such a way that it can
simulate a t-time bounded 1-tape Turing machine in time O(|g| · t(n)) on
inputs of length n:

� We use one tape to simulate M . The ith symbol of the work alphabet
is represented by the string bin(i) (�xed length binary encoding) and
the symbols are separated by #.
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222 26. Space and time hierarchies

(Remember that the tape alphabet of M might be much larger than
the alphabet of U .)

� We do not need to mark the position of the head of M on this tape,
since we can simply use the head of U on this tape.

� The encoding g of M stands on a second tape of U , the current state
of M , stored as a number in binary, stands on the third tape of M .

� Now U simulates one step of M as follows. It looks in g for the entry
that corresponds to the current state of M and the current symbol of
M on the �rst tape. Then it replaces the state and the symbol and
moves the head accordingly. In one such step, we have to read g once,
hence simulating one step of M can be done by O(g) steps of U .

Note that U is O(|g| · s(n)) space bounded, when M is s space bounded. If
M has an extra input tape, then U also has an extra input tape. (But this
was even true for UTM .)

We use U to construct C1:

Input: x ∈ {0, 1}∗, interpreted as [g, y] with g ∈ im gödTM .

1. If x does not have the above form, then reject.

2. Mark s2(|x|) symbols to the left and right of cell 0 on the �rst
tape.

3. Simulate M := göd−1
TM (g) on x on the �rst tape (using the

machine U).

4. On an extra tape, count the number of simulated steps.

5. If the simulation ever leaves the marked cells, then stop and
reject.

6. If more than 3s2(|x|) step are simulated, then stop and accept.
(We can count up to this value by marking s2(|x|) cells and
counting in ternary.)

7. Accept, if M rejects. Otherwise, reject.

Now letM be a s1 space bounded 1-tape Turing machine. We claim that
L(M) 6= L(C1). Let g be the Gödel number of M and let x = [g, z] for some
su�ciently long z.

First assume that x ∈ L(C1). We will show that in this case, x /∈
L(M), which means that L(M) 6= L(C1). If x ∈ L(C1), then C1 accepts
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x. This means that either M performed more than 3s2(|x|) many steps or
M halts on x and rejects. In the second case, we are done. For the �rst
case, note that there is a constant c such that M cannot make more than
cs1(|x|) · (s1(|x|) + 2) · (|x|+ 2) steps without entering an in�nite loop.1 Thus
if 3s2(|x|) > cs1(|x|) · (s1(|x|) + 2) · (|x|+ 2) then we get that x /∈ L(M). But
3s2(|x|) > cs1(|x|) · (s1(|x|) + 2) · (|x|+ 2) is equivalent to

log 3 · s2(|x|) > log c · s1(|x|) + log(s1(|x|) + 2) + log(|x|+ 2)

This is ful�lled by assumption for all long enough x, i.e., for long enough z,
because s2(|x|) ≥ log(|x|).

The second case is x /∈ L(C1). We will show that nowM accepts x. Note
that C1 always terminates. If C1 rejects y, then M ran out of space or M
halted and accepted. The second case, x ∈ L(M) and we are done. We will
next show that the �rst case cannot happen. Since M is s1 space bounded,
the simulation via U needs space |g| · s1(|x|). But |g| · s1(|x|) ≤ s2(|x|) for
su�ciently large |x|. Thus this case cannot happen.

C1 is s2 space bounded by construction. This proves the theorem.

The construction of C2 is similar, even easier. We do not have to check
whether M runs out of space. We do not need to count to 3s2(|x|) to detect
in�nite loops. Instead we count the number of steps made by C2. If more
then t2(|x|) step are made, then we stop and reject. In this way, C2 becomes
O(t2) time bounded. (To get down to t2, use acceleration.) Since we can
simulate one step of M by |g| steps, the simulation of M takes |g| · t1(|x|)
steps of C2 provided that M is t1 time bounded. This is less than t2(|x|) if
z is long enough. The rest of the proof is similar.

26.2 Deterministic hierarchy theorems

Theorem 26.2 (Deterministic space hierarchy) Let s2(n) ≥ log n be
space constructible and s1(n) = o(s2(n)). Then

DSpace(s1) ( DSpace(s2).

Proof. Consider C1 from Lemma 26.1. L(C1) ∈ DSpace(s2). There
is no s1 space bounded deterministic 1-tape Turing machine M such that
L(M) = L(C1). But for every s1 space bounded deterministic k-tape Turing
machine N there is a s1 space bounded deterministic 1-tape Turing machine
N ′ with L(N ′) = L(N) by Theorem 20.7. Thus there is also no s1 space
bounded deterministic k-tape Turing machine M such that L(M) = L(C1).

1We cannot bound |x|+ 2 by ds1(|x|), since s1 might be sublogarithmic.
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Next, we do the same for time complexity classes. The result will not be
as nice as for space complexity, since we cannot simulate arbitrary determin-
istic Turing machines by 1-tape Turing machines without any slowdown.

Theorem 26.3 (Deterministic time hierarchy) Let t2 be time constructible
and t21 = o(t2). Then

DTime(t1) ( DTime(t2).

Proof. Consider C2 from Lemma 26.1. L(C2) ∈ DTime(t2). There
is no t21 time bounded deterministic 1-tape Turing machine M such that
L(M) = L(C2). But for every t1 space bounded deterministic k-tape Turing
machine N there is a t21 time bounded deterministic 1-tape Turing machine
N ′ with L(N ′) = L(N) by Theorem 20.7. Thus there is also no t1 time
bounded deterministic k-tape Turing machine M such that L(M) = L(C1).

26.3 Remarks

The assumption t21 = o(t2) in the proof of the time hierarchy theorem is
needed, since we incurr a quadractic slowdown when simulating k-tape Tur-
ing machines by 1-tape Turing machines.

Hennie and Stearns showed the following theorem.

Theorem 26.4 (Hennie & Stearns) Every t time and s space bounded
deterministic k-tape Turing machine can be simulated by an O(t log t) time
bounded and O(s) space bounded deterministic 2-tape Turing machine.

We do not give a proof here. Using this theorem, we let C2 diagonalizes
against 2-tape Turing machines instead of 1-tape Turing machines. This
gives the following stronger version of the time hierarchy theorem.

Theorem 26.5 Let t2 be time constructible and t1 log t1 = o(t2). Then

DTime(t1) ( DTime(t2).

The answer to the following question is not known.2

Research Problem 26.1 Can the assumption t1 log t1 = o(t2) be further
weakened? In particular, can we get a better simulation of arbitrary deter-
ministirc Turing machines on Turing machines with a �xed number of tapes?

If the number of tapes is �xed, then one can obtain a tight time hierarchy.
Again we do not give a proof here.

2If you can answer it, we should talk about your dissertation.
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Theorem 26.6 (Fürer) Let k ≥ 2, t2 time constructible, and t1 = o(t2).
Then

DTimek(t1) ( DTimek(t2).

We conclude with pointing out that the assumption that s2 and t2 are
constructible are really necessary.

Theorem 26.7 (Borodin's gap theorem) Let f be a total recursive func-
tion N→ N with f(n) ≥ n for all n. Then there are total recursive functions
s, t : N→ N with s(n) ≥ n and t(n) ≥ n for all n such that

DTime(f(t(n))) = DTime(t(n)),

DSpace(f(s(n))) = DSpace(s(n)).

Proof. We only construct t, the construction of s is similar. Let Tg(n) :=
Timegöd−1

TM (g)(n) be the maximum running time of the Turing machine with

Gödel number g on inputs of length n.
We �rst show: For all n ∈ N, there is an m ∈ N such that for all Gödel

numbers g with cod(g) ≤ n,

Tg(n) ≤ f(m)⇒ Tg(n) ≤ m.

Let m0 = n and mi+1 = f(mi) + 1 für 1 ≤ i ≤ n + 1. The n + 2 intervals
[mi, f(mi)] are pairwise disjoint, because f(n) ≥ n for all n. Therefore,
there is an i0 such that Tg(n) /∈ [mi0 , f(mi0)] for all g with cod(g) ≤ n. Set
m = mi0 .

Let t(n) be the m de�ned above corresponding to n. t is recursive:
We can compute the intervals, since f is total and recursive. We can test
Tg(n) /∈ [mi, f(mi)] by simulating göd−1(g) on all inputs of length n. Since
each of these simulation can be stopped after f(mi) steps, this is decidable.

Now letM be f(t(n)) time bounded, i.e., Tg(n) ≤ f(t(n)) for all n, where
g = gödTM (M). By the construction of t, Tg(n) ≤ t(n) for all n ≥ cod(g).
Therefore, L(M) ∈ DTime(t). Thus, DTime(f ◦ t) = DTime(t).

Set for instance f(n) = 2n (or 22n or . . . ) and think for a minute how
unnatural non-constructible time or space bounds are.

Excursus: Nondeterministic hierarchies

For nondeterministic space, we can use Savitch's theorem to show the following:

NSpace(s1) ⊆ DSpace(s21) ( DSpace(s22) ⊆ NSpace(s22)

for any functions s1, s2 : N→ N with s1 = o(s2), s1 and s2 space constructible, and
s1(n) ≥ log n. It is even possible to show a tight hierarchy like in Theorem 26.2.
This uses the non-trivial�and unexpected�fact that NSpace(s) is closed under
complementation, the so-called Immerman�Szelepcsényi Theorem.
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For nondeterministic time, neither of the two approaches is known to work. But
one can get the following hierarchy result: For a function t : N → N, let t̃ be the
function de�ned by t̃(n) = t(n+ 1). If t1 is time constructible and t̃1 = o(t2) then

NTime(t2) \ NTime(t1) 6= ∅.

The proof of this result is lengthy. Note that for polynomial functions or exponential
functions, t̃1 = O(t1). Thus we get a tight nondeterministic time hierarchy for these
functions.
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We conclude this part with some more stories about NP.

27.1 NP versus co-NP

For a complexity class C, co-C denotes the set of all languages L ⊆ Σ∗

such that L̄ ∈ C. Deterministic complexity classes are usually closed un-
der complementation, for instance, DTime(t) = co-DTime(t) for any t and
P = co-P. For nondeterminsitc time complexity classes, it is a big open prob-
lem whether a class equals its co-class, in particular, whether NP = co-NP.
Note that we cannot just exchange accepting and nonaccepting states of a
polynomial time bounded nondeterministic Turing machine M : If M does
not accept x, then it will accept x after the exchange. This is �ne. But if M
accepts x, then it may still accept x after the exchange, since there might be
rejecting computation paths of M on x that will become accepting by the
exchange.

Let UNSAT be the encodings of all formulas in CNF that are not satis�-
able. Note that UNSAT is not the complement of SAT. The complement of
SAT is UNSAT together with all strings that are not an encoding of a formula
in CNF. But since such strings can be recognized in polynomial time, we get
that SAT ≤P UNSAT. Since SAT is NP-complete, SAT is co-NP-complete
(see the next Exercise ) and so is UNSAT.

Exercise 27.1 Show the following: If L ≤P L′, then L̄ ≤P L̄′ (cf. Exer-
cise 13.1).

TAUT is the following problem: Given a formula in disjunctive normal
form (in DNF for short), decide whether it is a tautology, i.e., whether all
assignments satisfy it.

Exercise 27.2 Show that TAUT is co-NP-complete.

One approach to show that P 6= NP would be to show that NP is not
closed under complementation, i.e., NP 6= co-NP. To show that NP is closed
under complementation, it is su�cient to show that one NP-complete prob-
lem is in co-NP.

Theorem 27.1 If co-NP contains an NP-complete problem, then NP =
co-NP.
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228 27. More on NP

Proof. Let L ∈ co-NP be NP-complete.

Let A ∈ NP arbitrary. Since L is NP-complete, there is a polynomial
time many one reductions f from A to L. But since L ∈ co-NP, A is also in
co-NP: We �rst compute f(x) and then run the nondeterministic machine
for L. Thus NP ⊆ co-NP.

Let B ∈ co-NP. If L is NP-complete, then L̄ is co-NP-complete, since a
many one reduction f from some A to L is also a many one reduction from
Ā to L̄. A similar argument as above now shows that B ∈ NP.

A natural co-NP-complete problem is UNSAT, another one is TAUT. But
we do not know whether they are in NP or not. Most researchers conjecture
that they are not.

What is the relation between P and NP∩ co-NP? PRIMES, the problem
whether a given number (in binary) is a prime number, was the example of
an interesting language in NP∩co-NP that is not known to be in P. Recently,
Agarwal, Kayal, and Saxena (Annals of Mathematics, 160(2), 781-793, 2004)
showed that PRIMES ∈ P.

FACTOR is another problem that is in NP∩ co-NP but not known to be
in P: Given two numbers x and c in binary, decide whether x has a factor b
with 2 ≤ b ≤ c.

Exercise 27.3 Prove the following:

1. FACTOR ∈ NP.

2. FACTOR ∈ co-NP. (You can use that PRIMES ∈ P)

At the moment, the most prominent example for a problem in NP∩co-NP
is PARITY GAMES, an important problem that occurs in veri�cation, but
it is beyond the scope of this lecture . . .

27.2 Self-reducibility

Assume we have a polynomial time deterministic algorithm for SAT. Then
given a formula φ, we can �nd out whether it is satis�able or not in polyno-
mial time. But what we really want is a satisfying assignment.

SAT has a nice property, we can reduce questions about a formula φ
in CNF to questions about smaller formulas. Let x be a variable of φ.
Let φ0 and φ1 be the two formulas that are obtained by setting x to 0
or 1, respectively, and then removing clauses that are satis�ed by this and
removing literals that became 0. (This procedure can produce an empty
clause. Such a formula is not satis�able by de�nition. Or the procedure
could produce the empty formula in CNF. This one is satis�able.) Then φ
is satis�able if and only if φ0 or φ1 is satis�able.
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If we have an algorithm that decides SAT in polynomial time, say in
time p(`), then we can �nd a satisfying assignment recursively. Let φ be
a satis�able formula. If φ has only one variable, then �nding a satisfying
assignment is easy. If φ has more variables, then we test whether φ0 is
satis�able and if it is, we compute a satisfying assignment for φ0. This
assignment together with setting x to 0 is a satisfying assignment for φ. If
φ0 is not satis�able, then φ1 is satis�able, since φ is. We recursively compute
a satisfying assignment for φ1. This assignment together with setting x to 1
is a satisfying assignment for φ.

Note that the number of variables of φ0 and φ1 is smaller than the number
of variables in φ. The recursion depth is therefore bounded by `, the length of
the formula. In each stage, there is only one recursive call and one evocation
of the decision prodecure for SAT. Thus the total running time is O(` ·p(`)).

Exercise 27.4 Assume that TSP ∈ P.

1. Describe a polynomial time algorithm that given a complete weighted
graph G computes the weight b of a minimum weight Hamiltonian tour.
(Hint: binary search)

2. Describe a polynomial time algorithm that given a complete weighted
graph G computes a minimum weight Hamiltonian tour. (Hint: self-
reducibility)

27.3 Approximation algorithms

While we do not know how to solve NP-hard problems e�ciently, they occur
frequently in practise and we have to �solve� them. Often, one does not need
to solve a problem exactly but we are content with an approximate solution.

Let us illustrate this with the problem TSP. If there is a polynomial
time deterministic Turing machine M that given a complete weighted graph
G outputs a minimum weight Hamiltonian tour, then P = NP, because given
the minimum weight Hamiltonian tour, we can decide whether a given pair
(G, b) is in TSP or not.

But can we, say, compute a Hamiltonian tour whose weight w is at most
twice the weight of a minimum weight Hamiltonian tour? In general, this it
not possible. For an edge weighted graph G, let OPT(G) be the weight of a
minimum Hamiltonian tour of G.

Theorem 27.2 If there is polynomial time bounded deterministic Turing
machine A that given an edge weighted graph G = (V, (V2 ), w) with n nodes,

computes a Hamiltonian tour H with w(H) < 2p(n) ·OPT(G) for some poly-
nomial p, then P = NP.
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Proof. We use essentially the same reduction as in Lemma 23.14. But
instead of mapping the �non-edges� to 2, we map them to the value n · 2p(n).
This is still a polynomial time reduction, since we need only p(n)+log n bits
to write down these values.

Now assume that the graph G has a Hamiltonian cycle. Then H has a
Hamiltonian cycle of weight n. If G does not have a Hamiltonian cycle, then
every Hamiltonian cycle of H has at least weight n · 2p(n), since it contains
at least one edge with this weight.

This means that if G has a Hamiltonian cycle, then A on H will return a
Hamiltonian tour with weight < n · 2p(n). If G does not have a Hamiltonian
cycle, then A on H can only return a Hamiltonian tour of weight at least
n · 2p(n). This way, we can distinguish whether G has a Hamiltonian cycle
or not. This gives a polynomial time deterministic Turing machine for HC,
hence P = NP.

But if w ful�lls the triangle inequality, that is,

w({u, v}) ≤ w({u, x}) + w({x, v})

for all nodes u, v, x ∈ V , then we can compute approximate solutions.

Exercise 27.5 Let G = (V, (V2 ), w) be an edge weighted graph such that w
ful�lls the triangle inequality. Let T be a minimum spanning tree of G. Start
in some node and do a depth �rst search on T . Order the nodes by the time
they are visited �rst in this depth �rst search. Then the Hamiltonian tour
that corresponds to this order hast weight ≤ 2 ·OPT(G).

27.4 Strongly NP-hard problems and pseudo-polynomial

problems

A number problem is a language whose elements are (encodings of) sequences
of natural or rational numbers. Subset-Sum is a number problem but also
TSP is, since we just have to write down the values of the weight function.
There are two natural ways to write down the instances of number problems:
in binary or in unary.

De�nition 27.3 A number problem is strongly NP-hard if it is NP-hard
when the numbers are written in unary.1

1This is a somewhat sloppy de�nition but you �nd it in many textbooks. We have
two languages: Lb, where the numbers are written in binary and Lu with the number
written in unary. Strongly NP-hard means that Lu is NP-hard. (This implies of course
that Lb is also NP-hard, since there is an easy reduction from Lb to Lu. The converse is
not clear, since the obvious reduction is not polynomial time computable, as the length of
the output might be exponential.)
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By Exercise 23.2, there is a deterministic Turing machine for Subset-Sum
with running time polynomial in n and b. This is called a pseudo-polynomial
running time: the running time is polynomial in the length of the vector and
the maximum size of the entries.2

Theorem 27.4 If a strongly NP-hard number problem L is decidable by a
pseudo-polynomially time bounded deterministic Turing machine, then P =
NP.

Proof. Let A ∈ NP. There is a polynomial time many one reduction
from A to L where the instances of L are written in unary. Since there is a
pseudo-polynomially time bounded deterministic Turing machine for L and
the elements of the instances are written in unary, L ∈ P. Thus A ∈ P.

This means that Subset-Sum cannot be strongly NP-hard unless P = NP.
On the other hand, we have seen that if the numbers are encoded in binary,
then Subset-Sum is NP-hard.

TSP is unconditionally strongly NP-hard. The reduction in Lemma 23.14
only uses the numbers 1 and 2. Since every weight function with weights
1 and 2 ful�lls the triangle inequality, even TSP with triangle inequality is
strongly NP-hard.

Problems with pseudo-polynomial algorithms can often be approximated
well. Consider the following version of Subset-Sum: Given (x1, . . . , xn, b),
�nd an I such that

∑
i⊆I xi is as large as possible but not larger than b.

3 This
problem also has a pseudo-polynomial algorithm. We can always assume that
each xi non-zero and not larger than b. Let OPT denote the maximal sum
of xi's that is not larger than b.

We will now show how we can, given an ε > 0, compute in time polyno-
mial in n and 1/ε a set J such that (1− ε) OPT ≤

∑
j∈J xj ≤ (1 + ε) OPT.

This means that our solution can get arbitrarily close to the optimum (at
the expense of a smaller ε). But since OPT can be as large as b, there is also
the risk that we overpack slightly.

Let x = max{x1, . . . , xn} and L = ε·x/n. Let yi = bxi/Lc and c = bb/Lc.
If we now run the pseudo-polynomial algorithm on this modi�ed instance
(y1, . . . , yn, c), then the overall running time is polynomial in 1/ε and n. We
get a set J such that

∑
j∈J yj ≤ c and no other set is achieves a larger weight

≤ c.
Let O be a set such that

∑
i∈O xi = OPT. By the optimality of J ,∑

i∈O yi ≤
∑

j∈J yj . This implies

(1− ε) OPT ≤
∑
i∈O

xi − L · n ≤ L ·
∑
i∈O

yi ≤ L ·
∑
j∈J

yj ≤
∑
j∈J

xj ,

2Using the notation of the previous footnote, this means that Lu ∈ P.
3A problem that is very handy in a Swedish furniture store: You are interested in goods

with weights x1, . . . , xn, but your car can only carry load b . . .
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since OPT ≥ x and xk − L ≤ L · yk ≤ xk for all k. On the other hand∑
j∈J

xj ≤ L
∑
j∈J

yj + nL ≤ (1 + ε) OPT .

Excursus: WHILE programs and unit costs

WHILE programs with unit costs and more operations than our simple state-
ments can be really powerful. Assume that we can perform multiplication and
division with remainder with unit costs.

Let y = (x1, . . . , xn, b) be an instance of Subset-Sum. Let x = max{x1, . . . , xn}.
Consider the product

P := (1 + 2Z·x1) · · · (1 + 2Z·xn) =
∑

S⊆{1,...,n}

2Z·
∑

i∈S xi =
∑
m

cm2Z·m,

where cm is the number of sets S such that
∑
i∈S xi = m. cm ≤ 2n since there are

at most 2n sets. Thus if we set Z = n+ 1, then we have no �carries� and get that
y ∈ Subset-Sum i� cb 6= 0.

We can compute cb by P/2
Z·(b+1) rem 2Z where �/� denotes the integer division

and �rem� computes the remainder.
Under unit costs, the number of operations is polynomial in n and log x, which

is the size of the instance. To compute 2Z·xi , we �rst compute 2Z and then (2Z)xi .
The latter only needs log xi multiplications by using the square and multiply tech-
nique: 2 7→ 22 = 4 7→ 42 = 16 7→ . . . .

On the other hand, note that under logarithmic costs, we do not have polyno-
mial running time, since P has more than Z · x bits.
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28 Grammars

When Noam Chomsky invented grammars, he wanted to study sentences
in natural languages. He wanted to formulate rules like a Satz in German
consists of a Subjekt followed by a Prädikat and then maybe followed by an
Objekt. A Subjekt consists of an Artikel and a Nomen. An Artikel can be
der, die, or das. A lot of words can be a Nomen, examples are Hund, Katze,
and Maus.1

De�nition 28.1 A grammar G is described by a 4-tuple (V,Σ, P, S).

1. V is a �nite set, the set of variables or nonterminals.

2. Σ is a �nite set, the set of terminal symbols. We have V ∩ Σ = ∅.

3. P is a �nite subset of (V ∪ Σ)+ × (V ∪ Σ)∗, the set of productions.

4. S ∈ V is the start variable.

Convention 28.2 If (u, v) ∈ P is a production, we will often write u → v
instead of (u, v).

In the example above, Satz would be the start variable. Subjekt, Prädikat,
. . . would be variables. The letters �d�, �e�, �r�, . . . are terminal symbols.

De�nition 28.3 1. A grammar G = (V,Σ, P, S) de�nes a relation ⇒G

on (V ∪Σ)∗ as follows: u⇒G v if we can write u = xyz and v = xy′z
and there is a production y → y′ ∈ P . We say that v is derivable
from u in one step. v is derivable from u if u⇒∗G v, where ⇒∗G is the
re�exive and transitive closure of ⇒G.

2. A word u ∈ (V ∪ Σ)∗ is called a sentence if S ⇒∗G u.

3. A sequence of sentences w0, . . . , wt ∈ (V ∪ Σ)∗ with w0 = S, wτ ⇒G

wτ+1 for 0 ≤ τ < t, and wt = u is called a derivation of u. (A
derivation can be considered as a witness or proof that S ⇒∗G u.)

4. The language generated by G is L(G) = {u ∈ Σ∗ | S ⇒∗G u}. (Note
that words in L(G) do not contain any variables.)

1Yes, I know, this is oversimpli�ed and not complete.
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Example 28.4 Let G1 = ({S}, {0, 1}, P1, S) where P1 consists of the pro-
ductions

S → ε

S → 0S1

Exercise 28.1 Prove by induction on i that 0iS1i is the only sentence of
length 2i+ 1 with S ⇒∗G1

0iS1i. Conclude that L(G1) = {0i1i | i ∈ N}.

Syntactic sugar 28.5 If P contains the productions u → v1, . . . , u → vt
(with the same left-hand sides u), then we will often write u→ v1 | · · · | vt.

Example 28.6 Let G2 = ({W,V,N,N+, Z, Z+}, {a, b, . . . , z, 0, 1, . . . , 9, :,=, 6=, ;,
+,−, [, ]}, P2,W ) where P2 consists of the productions

W → V :=V+V | V :=V−V | V :=N+ |
while V 6= 0 do W od |
[W ;W ]

V → xN+

N+ → Z | Z+N

N → Z | ZN
Z → 0 | 1 | · · · | 9
Z+ → 1 | 2 | · · · | 9

It is quite easy (but a little tedious) to see that L(G2) is the set of all WHILE
programs (now over a �nite alphabet).2 From N+, we can derive all decimal
representations of natural numbers (without leading zeros). From V , we can
derive all variable names. From W , we can derive all WHILE programs.
The �rst three productions produce the simple statements, the other two the
while loop and the concatenation.

Example 28.7 Let G3 = ({S,E,Z}, {0, 1, 2}, P3, S) where P3 is given by

S → 0EZ | 0SEZ
ZE → EZ

0E → 01

1E → 11

1Z → 12

2Z → 22

2Because of the simple structure of WHILE programs, we do not even need whitespaces
to separate the elements. Feel free to insert them if you like.
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Exercise 28.2 1. Prove by induction on n that S ⇒∗G3
0n1n2n for all

n ≥ 1.

2. Show that whenever S ⇒∗G3
w, then the number of 0's in w equals the

number of E's plus 1's in w and it also equals the number of Z's plus
2's in w.

3. Show that whenever one uses the rule 1Z → 12 and there is an E to
the right of the 2 created, then one cannot derive a word from Σ∗ from
the resulting sentence.

4. Conclude that L(G3) = {0n1n2n | n ≥ 1}.

28.1 The Chomsky hierachy

De�nition 28.8 Let G = (V,Σ, P, S) be a grammar.

1. Every grammar G is a type-0 grammar.

2. G is a type-1 grammar if |u| ≤ |v| for every production u → v ∈ P .
The only exception is the production S → ε. If S → ε ∈ P , then S
does not appear in the right-hand side of any production of P .

3. G is a type-2 grammar if it is type-1 and in addition, the left-hand
side of every production is an element from V .

4. G is a type-3 grammar if it is type-2 and in addition, the right-hand
side of every production is of the form ΣV ∪ Σ, except for a potential
production S → ε.

De�nition 28.9 Let i ∈ {0, 1, 2, 3}. A language L ⊆ Σ∗ is a type-i lan-
guage if there is a type-i grammar G with L = L(G).

The grammar in the Example 28.6 is a type-2 grammar. Type-2 gram-
mars are also called context-free grammars and type-2 languages are called
context-free languages. The idea behind this name is that we can replace a
variable A in a sentence regardless of the context it is standing in.

Type-1 grammars are also called context-sensitive grammars and type-
1 languages are called context-sensitive languages. Here rules of the form
xAy → w are possible and we can replace A only if it stands in the context
xAy.3

Type-3 grammars are also called right-linear grammars: �linear�, because
the derivation trees (to be de�ned in the next chapter) degenerate essentially

3The name context-sensitive is not too well chosen, type-0 grammars have the same
property, too, since they are more general. Nevertheless, the term context-sensitive is
reserved for type-1 grammars and languages. But the important property of type-1 gram-
mars is that they cannot shorten sentences by applying a production.
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to a linear chain, and �right� because the variable stand at the right-hand
end of the productions. Type-3 grammars are called regular grammars, too.
Theorem 28.12 explains this: type-3 languages are exactly the regular lan-
guages. The grammar that we get from the grammar in Example 28.6 by
only taking the variables {N,N+, Z, Z+}, these productions that use the
variables {N,N+, Z, Z+}, and the start symbol N+ generates the digital
representations without leading zeros of all natural numbers. It is �almost�
right linear. The variables Z and Z+ are just place holders for a bunch of
terminals. The grammar gets right linear if we replace the productions of
the type N → ZN and N+ → Z+N by productions of the form N → 0N ,
N → 1N , etc.

De�nition 28.10 1. The set of all type-2 languages is denoted by CFL.

2. The set of all type-1 languages is denoted by CSL.

By de�nition, the set of all type-3 languages is a subset of all type-2
languages. This inclusion is strict, since {0n1n | n ∈ N} is context-free but
not regular. The grammar G1 in Example 28.4 is an �almost context-free�
grammar for this language. The only problem is that we can derive ε from the
start symbol S and S is standing on the righthand side of some productions.
But for context-free grammars, this is not a real problem. The grammar

S → ε | S′

S′ → 01 | 0S′1

is a type-2 grammar for {0n1n | n ∈ N}. We will later see a general way
to get rid of productions of the form A → ε in an �almost context-free�
grammar. (Note that this is not possible for context-sensitive grammars!)

Syntactic sugar 28.11 When we write down a context-free grammar, we
often only write down the productions in the following. Then the following
conventions apply:

1. The symbols on the lefthand side are the variables.

2. All other symbols are terminals.

3. The lefthand side of the �rst productions is the start variable.

In the same way, type-2 languages are a subset of the type-1 languages.
The language {0n1n2n | n ≥ 1} is context-sensitive, as shown in Exam-
ple 28.7, but we will see soon that it is not context-free. Hence this inclusion
is also strict.

The set of all type-0 languages equals RE�a fact that we will not prove
here. On the other hand, CSL ⊆ REC: Given a string w ∈ Σ∗, we can
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generate all derivations for words of length |w|, because once we reached a
sentence of length > |w| in the derivation, we can stop, since productions of
context-sensitive grammars can never shorten a sentence. Thus the type-1
languages are a strict subset of the type-0 languages.

28.2 Type-3 languages

Theorem 28.12 Let L ⊆ Σ∗. L is a type-3 language i� L is regular.

Proof. �⇒�: Let G = (V,Σ, P, S) be a type-3 grammar with L(G) = L.
We will construct a nondeterministic �nite automaton M with L(M) =
L. We �rst assume that ε /∈ L(G). Let F /∈ V . We set M = (V ∪
{F},Σ, δ, S, {F}) where

δ(A, σ) =

{
{B | A→ σB ∈ P} if A→ σ /∈ P
{B | A→ σB ∈ P} ∪ {F} otherwise.

for all A ∈ V . Let w = w1w2 . . . wn ∈ Σ∗ \ {ε}. We have

w ∈ L(G) ⇐⇒ there are variables V1, . . . , Vn−1 ∈ V with

S ⇒G w1V1 ⇒G w1w2V2 ⇒G . . .⇒G w1w2 . . . wn−1Vn−1 ⇒G w1w2 . . . wn−1wn

⇐⇒ there are states V1, . . . , Vn−1 ∈ V with

V1 ∈ δ(S,w1), V2 ∈ δ(V1, w2), . . . , Vn−1 ∈ δ(Vn−2, wn−1), F ∈ δ(Vn−1, wn)

⇐⇒ w ∈ L(M).

If ε ∈ L(G), then we �rst construct an automaton M for L(G) \ {ε} �rst.4
Then we add a new start state that is also an end state and add an ε-
transition to the old start state of M . This automaton recognizes L(M) ∪
{ε} = L(G).
�⇐�: is shown in Exercise 28.3.

Exercise 28.3 Let M = (Q,Σ, δ, q0, Qacc) be a deterministic �nite automa-
ton. Let G = (Q,Σ, P, q0) where the set of productions contains a production

q → σq′ for all q, q′ ∈ Q and σ ∈ Σ with δ(q, σ) = q′

and in addition

q → σ for all q ∈ Q, q′ ∈ Qacc, and σ ∈ Σ with δ(q, σ) = q′.

If q0 ∈ Qacc, we will add the production q0 → ε, too. In this case, q0 is not
allowed to appear on the right-hand side of a production. If this happens,
then we modify the automaton M by copying the start state. Show that
L(G) = L(M).

4This is possible, since we get a type-3 grammar for L(G) \ {ε} by removing the
production S → ε.
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Type-3 languages (regular languages)

Let L ⊆ Σ∗. The following statements are equivalent:

� There is a right-linear grammar G with L(G) = L.

� There is a deterministic �nite automaton M with L(M) = L.

� There is a nondeterministic �nite automaton M with L(M) =
L.

� There is a regular expression E with L(E) = L.

� ∼L has �nite index.

Although all these concepts describe regular languages, they have di�erent

properties: nondeterministic �nite automata often have much fewer states

than deterministic ones for the same language. Deciding whether two de-

terministic �nite automata recognize the same language is easy whereas

this is a hard problem for regular expressions (we will see this later on),

etc.

Exercise 28.4 A grammar G = (V,Σ, P, S) is called left-linear if it is type-
2 and the right-hand sides of all productions are of the form V Σ∪Σ, except
for a potential production S → ε. Let L ⊆ Σ∗. Show that there is a left-linear
grammar G with L(G) = L i� L is regular.
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VI Grammars versus Turing ma-

chines

In this chapter, we investigate the relation between type-0 grammars and
Turing machines as well as between type-1 grammars and a restricted class
of Turing machines, so-called linear bounded automata.

VI.1 Type-0 versus RE

Lemma VI.1 For every nondeterministic Turing machine N , there is a
deterministic Turing machine M such L(N) = L(M).

Remark VI.2 We showed this result under the additional assumption that
N is weakly t time bounded for some time constructible t. Here we even do
not know an upper bound on the running time of N .

Proof. M acts as follows:

Input: x

1. Set t = 1;

2. Simulate N deterministically on x cutting o� every computa-
tion path at length t.

3. If N accepts on one path, then accept, too.

4. Otherwise, double t and go to step 2.

If N accepts x, then there is an accepting path of some length t0. When
t ≥ t0, M will �nd this path and accept. If N does not accept x, then M
will not �nd any accepting path and never stop and henceforth not accept
x.

Lemma VI.3 Let G = (V,Σ, P, S) be a type-0 grammar. Then there is a
Turing machine M such that L(G) = L(M).

Proof. By the lemma above, it su�ces to construct a nondeterministic
Turing machine M .
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Input: x ∈ Σ∗

1. Write S on the work tape.

2. Nondeterministically choose some production from P and some
position in the sentence on the work tape and apply the pro-
duction if possible.

3. Check whether the sentence is x. If yes, accept. If not, goto
step 2.

If x ∈ L(G), then there is some derivation for x. By construction, the
Turing machineM will �nd this derivation along some computation path. If
x /∈ L(G), then M will never stop on any computation path.

Lemma VI.4 Let M be a nondeterministic Turing machine. Then there is
a type-0 grammar G such that L(M) = L(G).

Proof overview: If M accepts x, then SC(x) ` C1 ` . . . ` Ct for con�gura-
tions C1, . . . , Ct and Ct is an accepting con�guration. If we write down the
Cτ in a proper way, then Cτ and Cτ+1 di�er only locally. G can simulate
this transition by an appropriate production. The only problem is that G
has to generate x, butM might erase x during this computation. Therefore,
our symbols have two components and we use the �rst just for storing x and
second for the simulation of M .

Proof. Let M = (Q,Σ,Γ, δ, q0, Qacc) be a nondeterministic Turing ma-
chine. We can assume that M has only one tape that is onesided in�nite.
The end of this tape is marked by the symbol $. Furthermore, we can as-
sume that M moves its head in every step and that M immediately stops,
whenever it enters an accepting state.

Our grammar G = (V,Σ, P, S) looks as follows. We �rst have a set of
�starting productions�:

S → (ε, $)T
T → (σ, σ)T for all σ ∈ Σ
T → U
U → (ε,�)U
U → R

AR → RA for all A ∈ V
R(ε, $) → (ε, $)q0
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The sentences that we can produce with these rules are of the form

(ε, $)q0(σ1, σ1) . . . , (σn, σn)(ε,�)i

for all n, i ∈ N. The second component of the variables are used to simulate
the Turing machine. Its concatenation always represents the content of the
tape. In the beginning, it is $σ1 . . . σn�i, which is the tape content when
starting the computation on σ1 . . . σn. The variable q0 (obviously) stores
the state and also marks the position of the head. The convention is that
the head of the Turing machine is always on the symbol to the right of the
state. The �rst component is just used to store the input word, since in the
end, the grammars has to produce the word while the Turing machine only
has to accept or reject it and potentially could have erased the input. The
variable R is only neccessary to create a nice �interface� to the second part
of the grammar; productions of the second part can only be applied after we
generated a sentence as shown above.

q(σ, γ) → (σ, γ′)q′ for all q ∈ Q, σ ∈ Σ ∪ {ε}, γ ∈ Γ,
and (q′, γ′, R) ∈ δ(q, γ)

(τ, β)q(σ, γ) → q′(τ, β)(σ, γ′) for all q ∈ Q, σ, τ ∈ Σ ∪ {ε}, γ, β ∈ Γ,
and (q′, γ′, L) ∈ δ(q, γ)

We claim that the following holds:

Claim VI.5

(q0, (2, $σ1σ2 . . . σn)) `∗M (q, (r, $γ1γ2 . . . γs))

i�

(ε, $)q0(σ1, σ1) . . . (σn, σn)(ε,�)m−n ⇒∗G
(ε, $)(σ1, γ1)(σ2, γ2) . . . (σr−1, γr−1)q(σr, γr) . . . (σm, γm)

where σi = ε if i > n, γj = � if j > s and m is larger than the number of
cells visited by M on σ1σ2 . . . σn.

Proof sketch of the claim. The �⇒� direction is shown by induction on
the length of the computation. For zero steps, the proof is trivial. Every
production of the second part of the grammar G simulates one step of the
Turing machine. So if we have a computation with n steps, we split it into
a computation of n − 1 steps and the last step. We apply the induction
hypothesis to the computation with n− 1 steps and then get a derivation by
simulation the last step directly. The converse direction is done in the same
manner, we just do induction on the length of the derivation.

Note that if there is no production of the second part is applicable to a
sentence, then this means that the Turing machineM stopped. IfM accepts
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w = σ1 . . . σn, then G now has to produce w. It uses the �rst component of
the symbols to achieve this.

q(σ, γ) 7→ qσ for all q ∈ Qacc, σ ∈ Σ ∪ {ε}, γ ∈ Γ,
(σ, γ)q 7→ σq for all q ∈ Qacc, σ ∈ Σ ∪ {ε}, γ ∈ Γ,

q 7→ ε for all q ∈ Qacc.

These productions remove the second track of the current sentence. Note
how handy it is that every entry in the �rst component that is not a symbol
of the input w is the empty word. In this way, these entries vanish when we
concatenate. To get a terminal word, the state q can only be removed after
all variables of the form (σ, γ) have been replaced by terminal symbols.

By construction, we have that M accepts a word w i� G produces w.
This �nishes the proof.

Exercise VI.1 Work out the details in the proof of the claim above.

Altogether, we have shown the following result:

Theorem VI.6 The class of all type-0 languages is precisely RE.

VI.2 CSL versus linear bounded automata

A linear bounded automaton is a 1-tape nondeterministic Turing machine
that cannot write on any other cell than the cells occupied by the input. The
input w is bounded by $ to the left and & to the right. When the Turing
machine enters the $, it has to write $ and immediately to go to the right;
if it enters & from the right, it has to go to the left.

It is quite easy to modify the proofs from the previous section to show
that the languages recognized by linear bounded automata coincide with the
set of context-sensitive languages.

Lemma VI.7 Let G = (V,Σ, P, S) be a type-1 grammar. Then there is a
linear bounded automaton M such that L(G) = L(M).

Proof sketch. M works as the Turing machine in Lemma VI.3. Since it
has only one tape, it uses a separate track for storing the current sentence.
Since context-sensitive grammars are nondecreasing, M can stop whenever
it wants to create a sentence that is longer than the input.

Lemma VI.8 LetM be a linear bounded automaton. Then there is a context-
sensitive grammar G such that L(M) = L(G).
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Proof sketch. First we modify the linear bounded automaton: Instead
of an input w = σ1σ2 . . . σn−1σn, it gets the input σ̄1σ2 . . . σn−1σ̄n. The left
and the right most symbols are �marked� versions of the original symbols
that allows the automaton to detect the begin and end of the input. Now it
is easy to modify the automaton in such a way that it never leaves the input
at all.

Again, we can modify the construction in Lemma VI.4. First we modify
the �rst part of the grammar G in such a way that it can only generate
sentences of the form q0(σ1, σ̄1)(σ2, σ2) . . . (σn−1, σn−1)(σn, σ̄n).

If we look at this new grammar, there is only one place at which we have
productions whose righthand side is shorter than the lefthand side, namely
the production q → ε. We circumvent this by �packing� the state q into the
neighbouring variables. More precisely, we replace occurrences of q(σ, γ) by
(σ, γ, q) and this is now one variable. It is easy to change the productions
accordingly. In this way, the grammar G becomes nondecreasing.

Altogether, we get the following theorem.

Theorem VI.9 (Kuroda) CSL is precisely the class of languages recog-
nized by linearly bounded automata.
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By de�nition, context-free grammars have at most one ε-production, namely,
S → ε, and if this production is present, then S is not allowed to appear
on the righthand side of any production. It is often convenient to allow
arbitrary ε-productions. For instance, the grammar

S → ε | 0S1

looks much nicer than the one given by

S′ → ε | S
S → 01 | 0S1

For context-free grammars (but not for context-sensitive grammars!), we
can allow arbitrary ε-productions. So from now on, we allow arbitrary ε-
productions in context-free grammars. We will see that we can always �nd
an equivalent grammar that has at most one ε-production of the form S → ε.

29.1 Derivation trees and ambiguity

Consider the grammar G given by

E → E ∗ E | E + E | (E) | x

It generates all arithmetic expressions with the operations ∗ and + over the
variable1 x.2 A word w ∈ Σ∗ is in L(G) if S ⇒∗ w.3 A derivation is a
witness for the fact that S ⇒∗ w, i.e., a sequence of sentences such that
S ⇒ w1 ⇒ w2 ⇒ . . . ⇒ wt ⇒ w. Usually, a word w has many derivations.
Here are two examples for Tthe word x+ x ∗ x in the example above:

E ⇒ E + E ⇒ x+ E ⇒ x+ E ∗ E ⇒ x+ x ∗ E ⇒ x+ x ∗ x (29.1)

E ⇒ E + E ⇒ E + E ∗ E ⇒ E + E ∗ x⇒ E + x ∗ x⇒ x+ x ∗ x (29.2)

1This is a variable in the expression. Do not confuse this with a variable of the grammar.
2Yes, I know, arithmetic expressions over one variable without any constants are not

really exciting. But you can replace x by your favourite collection of variables and con-
stants.

3Whenever the grammar is clear from the context, we will write S ⇒∗ w instead of
S ⇒∗G w.4

4This could be a record number of footnotes per page.

245



246 29. Context-free grammars

In the �rst derivation, we always replace the leftmost variable. Such deriva-
tions are called leftmost derivations. In the second derivation, we always
replace the rightmost variable. Such derivations are called, guess what, right-
most derivations. Although the two derivations are di�erent, they are not
�really di�erent�, they correspond to the same derivation tree.

De�nition 29.1 Let G = (V,Σ, P, S) be a context-free grammar.

1. A derivation tree (or parse tree) is an ordered tree with a node labeling
such that:

(a) The root is labeled with S.

(b) All leaves are labeled with an element from V ∪ Σ or with ε. In
the latter case, the leaf is the only child of its parent.

(c) All interior nodes are labeled with an element of V . If A is this
label and the labels of the children are x1, x2, . . . , xt (in this order)
then A→ x1x2 . . . xt ∈ P .5

2. The yield (or leaf-word or front or . . . )6 of a parse tree is the concate-
nation of the labels of the leaves (in the order induced by the ordering
of the vertices in the tree).

Figure 29.1 shows the derivation tree that corresponds to the two deriva-
tions (29.1) and (29.2). The leftmost derivation (29.1) is obtained by doing
a depth-�rst search and visiting the children from left to right, the rightmost
derivation (29.2) is obtained by visiting them from right to left. In general,
each derivation tree corresponds to exactly one left derivation and exactly
one right derivation.

But there is another derivation tree for x+x∗x. It is shown in Figure 29.2.
Having several derivation trees for the same word is in general a bad thing.

De�nition 29.2 1. A context-free grammar is called ambiguous if there
is a word that has two or more derivation trees. Otherwise the grammar
is called unambiguous.

2. A context-free language is called unambiguous if there is an unam-
biguous grammar that generates the language. Otherwise it is called
inherently ambiguous.

The derivation tree in Figure 29.2 is unnatural, because it does not re-
spect the usual precedence of the operators �∗� and �+�. But there is an

5If t > 1, then every xτ ∈ V ∪ Σ. If t = 1, then x1 = ε is possible. In this case, A→ ε
is a production of P .

6There are far too many names for this.
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Figure 29.1: A derivation tree for x+ x ∗ x.
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Figure 29.2: Another derivation tree for x+ x ∗ x.
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unambiguous grammar:

E → T | T + E

T → F | F ∗ T
F → x | (E)

It is by no means obvious that the grammar above is unambiguous and this
fact requires a formal proof. The proof is rather tedious and can be shown
as follows:

� There is only one derivation tree for T + T + · · ·+ T .

� There is only one derivation tree for deriving F ∗ F ∗ · · · ∗ F from T .
(This means that the root of the tree is labeled by T .) In turn, there
is only one derivation tree for deriving e1 ∗ e2 ∗ · · · ∗ et from T where
each eτ is either x or (E).

� Now we prove by the number of pairs of brackets that there is at most
one derivation tree for every sentence: Take a pair of matching brackets
in a sentence s. The subsentence s′ between these brackets has to be
derivable from E, since F → (E) is the only rule that introduces
brackets and the chosen pair of brackets was a matching one. By
the induction hypothesis, there is only one derivation tree for s′. If
we replace the sentence (s′) by F in s, then again by the induction
hypothesis, there is only one derivation tree for this sentence.

Note that simply respecting the precedence of operators is not enough for
making the grammar unambiguous: If we had taken the rule T → F | T ∗T ,
then the grammar still would be ambiguous.

There are context-free languages that are inherently ambiguous.

Theorem 29.3 (without proof) The language {0n1n2m3m | n,m ≥ 1} ∪
{0n1m2m3n | n,m ≥ 1} is context-free and inherently ambiguous.

Exercise 29.1 Show that the language from Theorem 29.3 is context-free.

29.2 Elimination of useless variables

Assume you created a big context-free grammar for some, say, programming
language. Can you �nd out whether everything is really needed in your
grammar or are there some artifacts in it, i.e., variables that you do not
need any more because you later changed some things somewhere else and
now these variables do not occur in any derivation of a terminal word?

De�nition 29.4 Let G = (V,Σ, P, S) be a context-free grammar.
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1. A variable A is generating if there is a word w ∈ Σ∗ such that A⇒∗G w.

2. A variable A is reachable if there are words x, y ∈ (V ∪ Σ)∗ such that
S ⇒∗G xAy.

3. A variable A ∈ V is useful if it is reachable and generating. Otherwise,
A is useless.

Theorem 29.5 Let G = (V,Σ, P, S) be a context-free grammar with L(G) 6=
∅. Let H = (W,Σ, Q, S) be the grammar that is obtained as follows:

1. Remove all variables A ∈ V that are not generating and all productions
that contain A. Let the resulting grammar be G′ = (V ′,Σ, P ′, S).

2. Remove all variables A ∈ V ′ that are not reachable in G′ and all pro-
ductions that contain A.

Then L(H) = L(G) and H does not contain any useless variables.

Proof. We start with some simple observation: If S ⇒∗ uAv ⇒∗ w with
u, v ∈ (V ∪ Σ)∗ and w ∈ Σ∗, then A is both reachable and generating. The
fact that A is reachable is obvious. But A is also generating, since we can
derive some substring of w from it.

Next we show that H contains no useless variables:
Let A ∈W . Since A survived the �rst step (as it is in W , it has to be in

V ′), there is a w ∈ Σ∗ such that A⇒∗G w. Every variable in a corresponding
derivation is also generating since we can derive a subword of w from it
(cf. the observation above) and therefore, every variable in the derivation
survives the �rst step and is in V ′. Thus A⇒∗G′ w and A is also generating
in G′.

A variable A ∈W is certainly reachable in G′ since it survived the second
step. This means that there are u, v ∈ (V ′∪Σ)∗ such that S ⇒∗G′ uAv. (Note
that S is still in G′, since L(G) 6= ∅.) But every variable in a correspoding
derivation is also reachable in G′. Hence all variables in the derivation are in
H and therefore, S ⇒∗H uAv. We know that every variable in the derivation
is generating in G′, thus S ⇒∗H uAv ⇒∗G′ w for some w ∈ Σ∗. But this
means that every variable in a derivation corresponding to uAv ⇒∗G′ w is
reachable from S in G′. Hence all of them are in H, too, and we have
S ⇒∗H uAv ⇒∗H w. Thus A is generating and reachable, hence it is useful.

It remains to show that L(G) = L(H):
�⊇�: Is obvious since we only remove variables from G.
�⊆�: If S ⇒∗G w for some w ∈ Σ∗, then every variable in a derivation of w
is both reachable and generating in G by the observation at the beginning
of the proof. So all variables in the derivation survive the �rst step and are
in G′. But since all variables are in G′, we still have S ⇒∗G′ w and thus all
variables in the derivation survive the second step. Therefore S ⇒∗H w and
w ∈ L(H).
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Example 29.6 Consider the following grammar

S → AB | 0
A→ 0

We cannot derive any terminal word from B, hence we remove the production
S → AB. Now we cannot derive any sentence of the form xAy from S, hence
we remove the rule A→ 0, too. If we had reversed the order of the two steps,
then we would not have removed anything in the �rst step and only the rule
S → AB in the second step. The production A → 0 would not have been
removed.

Theorem 29.5 provides a way to eliminate useless symbols once we can
determine the generating and reachable variables. Algorithms 12 and 13
solve these two tasks.

Exercise 29.2 Show that the Algorithms 12 and 13 are indeed correct.

Program 12 Determining the generating variables

Input: A context-free grammar G = (V,Σ, P, S)
Output: The set V0 of all variables that are generating.
1: Add all A ∈ V to V0 for which there is a production A→ u with u ∈ Σ∗.

2: while there is a production A→ a1a2 . . . at such that A /∈ V0 and all aτ
that are in V are in V0 do

3: Add A to V0.
4: od
5: Return V0.

Program 13 Determining the reachable variables

Input: A context-free grammar G = (V,Σ, P, S)
Output: The set V1 of all variables that are reachable
1: Add all A ∈ V to V1 for which there is a production S → xAy for some
x, y ∈ (V ∪ Σ)∗.

2: while there is a production A→ a1a2 . . . at such that A ∈ V1 and some
aτ is in V \ V1 do

3: Add all aτ ∈ V \ V1 to V1, 1 ≤ τ ≤ t.
4: od
5: Return V1.
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In this chapter, we show a formal form for context-free grammars, the so-
called Chomsky normal form. On the way, we also see how to eliminate
ε-productions.

30.1 Elimination of ε-productions

De�nition 30.1 Let G = (V,Σ, P, S) be a context-free grammar. A ∈ V is
called nullable if A⇒∗G ε.

Theorem 30.2 Let G = (V,Σ, P, S) be a context-free grammar. Let H =
(V,Σ, Q, S) be the grammar that is generated as follows:

1. Replace every production A→ a1a2 . . . ak by all 2` productions, one for
each possibility to leave an aiλ out where ai1 , . . . , ai` are all nullable
variables among a1, a2, . . . , ak.

2. Remove every ε-production. (This removes also an ε-production that
we might have introduced in the �rst step when a1, . . . , ak are all nul-
lable.)

We have L(G) \ {ε} = L(H).

Proof. We show the following:

For all A ∈ V and u ∈ (V ∪ Σ)∗: A⇒∗H u ⇐⇒ A⇒∗G u and u 6= ε.

From this statement, the claim of the theorem follows:
�=⇒�: The proof is by induction on the length of the derivation:
Induction base: If A → u ∈ Q, then u 6= ε by construction. There is a
production A → a1a2 . . . at, each aτ ∈ V ∪ Σ, and indices j1, . . . , j` such
that the concatenation of all aτ with τ /∈ {j1, . . . , j`} is u and all aτ with
τ ∈ {j1, . . . , j`} are nullable. Thus A⇒∗G u.
Induction step: If A⇒∗H u, then A⇒∗H w ⇒H u. This means that w = xBz
such that B → y ∈ Q and u = xyz. As in the proof of the induction base,
we can show that B ⇒∗G y holds. By the induction hypothesis, A⇒∗G xBz.
Altogether, A⇒∗G xyz = u. u 6= ε, since y 6= ε.
�⇐=�: Is left as an exercise.

Exercise 30.1 Show the �⇐=�-direction of the proof of Theorem 30.2.
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Theorem 30.2 provides a way to eliminate ε-productions once we can
determine the nullable variables. Algorithm 14 solves the latter task.

Exercise 30.2 Show that Algorithm 14 is indeed correct.

Program 14 Determining the nullable variables

Input: A context-free grammar G = (V,Σ, P, S)
Output: The set V0 of all variables that are nullable.
1: Add all A ∈ V to V0 for which there is a production A→ ε ∈ P .
2: while there is a production A→ a1a2 . . . at such that A is not in V0 and

all aτ are nullable do
3: Add A to V0.
4: od
5: Return V0.

30.2 Elimination of chain productions

De�nition 30.3 Let G = (V,Σ, P, S) be a context-free grammar. A produc-
tion of the form A→ B with A,B ∈ V is called a chain production.

Like ε-productions, chain productions are useful for getting compact
grammars; E → T | E + T is an example. On the other hand, like ε-
productions, chain productions are not desirable, because they do not gen-
erate anything really new. But again, there is a way to get rid of chain
productions.

First of all, we can immediately remove all productions of the form A→
A. We build a directed graph H = (V,E). There is an edge (A,B) ∈ E
if there is a chain rule A → B ∈ P . (Recall that productions are tuples,
therefore we can also write E = P ∩ (V × V ).) If H has a directed cycle,
then there are productions Bτ → Bτ+1 ∈ P , 1 ≤ τ < t, and Bt → B1 ∈ P .
But this means that the variables B1, . . . , Bt are interchangable. Whenever
we have a sentence that contains a variable Bi we can replace this by any
Bj by using the chain productions.

Exercise 30.3 Let G = (V,Σ, P, S) be a context-free grammar and let H =
(V, P ∩ V × V ). Assume that there is a directed cycle in H consisting of
nodes B1, B2, . . . , Bt, t ≥ 2. Let G′ = (V ′,Σ, P ′, S) be the grammar that
we obtain by replacing all occurrences of a Bi by B1, removing the variables
B2, . . . , Bt from V and the production of the form B1 → B1. Show the
following: L(G) = L(G′).

If we apply the construction above several times, we obtain a grammar,
call it again G = (V,Σ, P, S), such that the corresponding graph H = (V, P ∩
V × V ) is acyclic.
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Theorem 30.4 Let G = (V,Σ, P, S) be a context free grammar such that
the graph H = (V, P ∩ V × V ) is acyclic. Then there is a grammar G′ =
(V,Σ, P ′, S) without chain productions with L(G) = L(G′).

Proof. The proof is by induction on the number of chain productions in
P (or the number of edges in H).
Induction base: If there are no chain productions, then there is nothing to
prove.
Induction step: Since H is acyclic and contains at least one edge, there must
be one variable A that has indegree ≥ 1 but outdegree 0. Let B1, . . . , Bt
all variables such that Bτ → A ∈ P . Let A → u1, . . . , A → u` ∈ P all
productions with lefthand side A. Since A has outdegree 0 in H, uλ /∈ V
for all 1 ≤ λ ≤ `. We remove the productions Bτ → A and replace them by
Bτ → uλ for 1 ≤ τ ≤ t and 1 ≤ λ ≤ `. Let G′′ be the resulting grammar.
Since we removed at least one chain production and did not introduce any
new ones, G′′ has at least one chain production less than G. By the induction
hypothesis, there is a grammar G′ without any chain productions such that
L(G′′) = L(G′). Hence we are done if we can show that L(G′′) = L(G):
If S ⇒∗G w for some w ∈ Σ∗ and the production Bτ → A is used in the
corresponding derivation, then eventually, a production A → uλ has to be
used, too, since w ∈ Σ∗. Hence we can use the production Bτ → uλ directly
and get a derivation in G′. Conversely, if S ⇒∗G′ w and the production
Bτ → uλ is used in a corresponding derivation, then we can replace this step
by two steps that use the productions Bτ → A and A→ uλ.

30.3 The Chomsky normal form

De�nition 30.5 A context-free grammar G = (V,Σ, P, S) is in Chomsky
normal form if all its productions are either of the form

A→ BC

or

A→ σ

with A,B,C ∈ V and σ ∈ Σ.

Theorem 30.6 For every context-free grammar G = (V,Σ, P, S) with L(G) 6=
∅ there is a context-free grammar G′ = (V ′,Σ, P ′, S) in Chomsky normal
form with L(G′) = L(G) \ {ε}.

Proof. By the result of the previous sections, we can assume that G does
not contain any ε-productions and chain rules. Thereafter, L(G) does not
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contain the empty word anymore. For every σ ∈ Σ, we introduce a new
variable Tσ, add the new production Tσ → σ, and replace every occurence
of σ in the productions in P by Tσ except in productions of the form A→ σ
(since this would introduce new chain productions, but A → σ has already
the �right� form for Chomsky normal form).

Thereafter, every productions is either of the form A → σ or A →
A1A2 . . . At where A1, A2, . . . , At are all variables and t ≥ 2. Hence we are
almost there except that the righthand sides might have too many variables.
We can overcome this problem by introducing new variables C2, . . . , Ct−1

and replacing the production A→ A1A2 . . . At by

A→ A1C2

C2 → A2C3

. . .

Ct−2 → At−2Ct−1

Ct−1 → At−1At

The resulting grammar G′ is obviously in Chomsky normal form. It is easy
to see that L(G′) = L(G) \ {ε} (see Exercise 30.4).

Exercise 30.4 Prove that the grammar G′ constructed in the proof of The-
orem 30.6 indeed ful�lls L(G′) = L(G) \ {ε} (and even L(G′) = L(G), since
we assumed that G does not contain any ε-productions).

Exercise 30.5 Let G be a context-free grammar and let H be the grammar
in Chomsky normal form constructed in this section. If G has p productions,
how many productions can H have?

30.4 Further exercises

A context-free grammar G = (V,Σ, P, S) is in Greibach normal form if for
every A→ v ∈ P , v ∈ ΣV ∗.

Exercise 30.6 Show that for every context-free grammar G, there is a context-
free grammar H in Greibach normal form such that L(G) \ {ε} = L(H).
(Hint: First convert into Chomsky normal form.)
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context-free languages

In this chapter, we will develop a method for proving that a language is not
context-free. It will be similar to the pumping lemma for regular languages.

31.1 The pumping lemma

Recall that a binary tree is a tree such that each node is either a leaf or has
exactly two children. (Some people prefer to call a tree binary, if the number
of children is at most two.) The height of a tree is the length of a longest
path from the root to a leaf. The length of a path is the number of edges
in it. (Some people prefer to take the number of nodes instead.) So a tree
consisting of one single node has height 0.

Let G be a context-free grammar in Chomsky normal form. Derivation
trees of a grammar in Chomsky normal form have a special structure: The
parents of the leaves have only one child since they correspond to the pro-
ductions of the form A→ σ. All other nodes have exactly two children since
they correspond to the productions A→ BC. This means that if we remove
the leaves from a derivation tree, we will get a binary tree.

Lemma 31.1 (Pumping lemma for context-free languages) Let L be
a context-free language. There is an n ∈ N such that for all words w ∈ L with
|w| ≥ n, there are words u, x, y, z, v with w = uxyzv, |xz| ≥ 1, |xyz| ≤ n
and for all i ∈ N, uxiyziv ∈ L.

Proof. Let G = (V,Σ, P, S) be a grammar for L\{ε} in Chomsky normal
form. Let ν = |V | and set n = 2ν . As mentioned above, after removing
the leaves, a derivation tree T for w is always a binary tree. The number of
leaves of this new tree T ′ is the same of the derivation tree, namely |w| ≥ 2ν .
By Lemma 31.2, T ′ has a path of length at least ν. On this path, there are
ν + 1 nodes. Thus at least two of these nodes are labeled with the same
variable by the pigeonhole principle. Even stronger, we know that among
the ν + 1 nodes that are closest to the leaf on this path, two have the same
label. Let this label be A. Figure 31.1 shows such a path.

Now we consider the two nested subtrees with the root labeled by A.
These two subtrees determine the decomposition of w into uxyzv, see Fig-
ure 31.2. Since at the upper A, a production of the form A → BC is used,
either x 6= ε or z 6= ε, hence |xz| ≥ 1. The height of the subtree with the
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256 31. The pumping lemma for context-free languages

S

w

A

A

Figure 31.1: On a path of length ν, one variable, say A, has to appear twice.

upper A as root is at most ν by construction. Thus this subtree has a most
≤ 2ν = n leaves by Lemma 31.2. Thus |xyz| ≤ n.

It remains to show that uxiyziv ∈ L for all i ∈ N. We do this by
constructing derivation trees for these words. We get a derivation tree for
ux0yz0v = uyv by removing the subtree with the upper A as root and
replacing it by the subtree with the lower A as root. This is again a valid
derivation tree, see Figure 31.3. We get a derivation tree for ux2yz2v by
replacing the subtree with the lower A as root by a copy of the subtree
with the upper A as root, see Figure 31.4. By repeating this replacement
procedure, we get derivation trees for all uxiyziv with i ≥ 2. This completes
the proof.

Lemma 31.2 A binary tree of height h has at most 2h+1 − 1 nodes and at
most 2h leaves.

Proof. The proof is by induction on h.

Induction basis: A tree of height 0 has 1 = 20+1−1 nodes and 1 = 20 leaves.

Induction step: Let T be a binary tree of height h. Let T1 and T2 be the
subtrees adjacent to the root of T (see Figure 31.5). Let h1 and h2 be the
heights of T1 and T2, respectively. We have h1, h2 ≤ h− 1 (and for at least
one of h1 and h2, equality holds). By the induction hypothesis, Ti has at
most 2hi+1 − 1 nodes and 2hi leaves, i = 1, 2. Since hi ≤ h − 1, T has at
most 2 · (2h+1 − 1) + 1 = 2(h+1)+1 − 1 nodes and 2 · 2h = 2h+1 leaves.
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S

A

A

u x y z v

Figure 31.2: The subtrees with root A determine the decomposition of w
into uxyzv.

S

A

u v

y

Figure 31.3: A derivation tree for ux0yz0v.
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S

A

A

A

x zy

xu z v

Figure 31.4: A derivation tree for ux2yz2v.

T2T1

Figure 31.5: The tree T and its two subtrees T1 and T2.

31.2 How to apply the pumping lemma

Example 31.3 Let us show that L = {0k1k2k | k ∈ N} is not context-free.
Let n be an arbitrary natural number. We choose the word w = 0n1n2n. Let
w = uxyzv be the decomposition as in the pumping lemma. Since |xyz| ≤ n,
xyz ∈ {0, 1}∗ or xyz ∈ {1, 2}∗. (In other words, xyz can never have 0's
and 2's simultaneously, since the block of 1's in the middle of w is too long.)
If L were context-free, then ux2yz2v ∈ L. We show that ux2yz2v /∈ L and
thus L cannot be context-free: We �rst assume that xyz consists of 0's and
1's. Since |xz| ≥ 1, the number of 0's or 1's or both is greater than n but
the number of 2's does not change. Hence ux2yz2v /∈ L. The case that xyz
consists of 1's and 2's is treated similarly.
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31.3. How to decide properties of context-free languages 259

Corollary 31.4 CFL ( CSL.

The pumping lemma game for context-free languages

Proving that a language L is not context-free via the pumping lemma
can be considered as a game between you and your professor.

1. Your professor picks an n ∈ N \ {0}.

2. You pick a word w ∈ L with |w| ≥ n.

3. Your professor picks words u, x, y, z, v such that w = uxyzv,
|xz| > 0, and |xyz| ≤ n.

4. You pick an i ∈ N.

Now it comes to the showdown: You win if uxiyziv /∈ L. Your
professor wins if uxiyziv ∈ L. If you have a winning strategy, i.e, no
matter what your professor picks, you can always make your choices
such that you win, then L is not context-free.

(If L is indeed not context-free, this is one of the rare chances to win against

your professor.)

The iron pumping lemma rule for context-free languages

The condition of the pumping lemma is only necessary.

Or in a more bureaucratic �rules language�: The iron pumping lemma rule

for regular languages applies accordingly.

31.3 How to decide properties of context-free lan-

guages

Which properties can we decide about context-free languages? We will dis-
cuss the same problems as for regular languages. The context-free languages
will be given by a grammar G.

Word problem: Given G and w ∈ Σ∗, is w ∈ L(G)?

Emptiness problem: Given G, is L(G) = ∅?

Finiteness problem: Given G, is |L(G)| <∞?

Equivalence problem: Given G1 and G2, is L(G1) = L(G2)?
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31.3.1 The word problem

The question �w ∈ L(G)?� is decidable. We �rst compute a grammar
G′ = (V ′,Σ, P ′, S) in Chomsky normal form for L(G) \ {ε}.1 Then we sys-
tematically generate all derivations that generate sentences of length ≤ |w|.
The number of such derivations is bounded by |P ′|2|w|, since each applica-
tion of a production either replaces a variable by a terminal or increases the
length of the sentence by 1. After 2|w| such applications, we either generated
w or a sentence from which we cannot derive w. We will see a much more
e�cient procedure in the exercises.

31.3.2 Testing emptiness

Again, we �rst compute a grammar G′ = (V ′,Σ, P, S) in Chomsky normal
form for L(G)\{ε}. L(G′) contains a word of length < n := 2|V

′| i� L(G′) 6=
∅. This follows from the pumping lemma. Assume we have a word w ∈ L(G′)
with |w| ≥ n. Then the pumping lemma says that there must be a shorter
word in L(G′), namely the one that we get when we set i = 0. So we �just�
have to test all words up to length n. But there is a much more e�cient
way: We just eliminate all useless variables. If some variables remain, then
the language is nonemtpy.

31.3.3 Testing �niteness

Let G′ and n be chosen as in Section 31.3.2. L(G′) is in�nite i� L(G′)
contains a word of length between n and 2n − 1: If L(G′) is in�nite, then
it contains words that are arbitrarily long. By the pumping lemma, as long
as the word has length ≥ n, we can shorten it by an (unknown) amount
between 1 and n. Thus we can bring it down to a length between n and
2n− 1. On the other hand, if L(G′) contains a word of length ≥ n, then it
contains in�nitely many, again by the pumping lemma. But again, there is
a much more e�cient way: We eliminate all useless variables and construct
a graph H = (V ′, E) where (A,B) ∈ E i� there is a production of the form
A→ xBy with x, y ∈ (V ∪ Σ)∗. L(G′) contains in�nitely many words i� H
contains a directed cycle.

31.3.4 Testing equivalence

Testing whether L(G1) = L(G2) is an undecidable problem. The proof is by
reduction to a problem called Post's correspondence problem. We will not
present a proof in this lecture.

Exercise 31.1 Show that the language of all pairs G1 and G2 of (encodings
of) grammars with L(G1) 6= L(G2) is in RE.

1If w = ε, then we just can check whether S is nullable.
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31.4 Further exercises

The pumping lemma for regular languages has one additional degree of free-
dom: We can choose the region of the word w where the pumping should take
place. Here is a stronger version of the pumping lemma for the context-free
languages that achieves something similar. It is usually called Ogden lemma,
since it was proven by William Ogden in 1968. (And no, the pumping lemma
was not proven by Mr. or Mrs. Pumping.)

The Ogden lemma speaks about marked positions. This simply means
that we choose a bunch of symbols of w and these choices determine, to some
extend, at which part of w the pumping takes place.

Lemma 31.5 (Ogden lemma) Let L be a context-free language. There is
an n ∈ N such that for all words w ∈ L with |w| ≥ n and at least n positions
marked, there are words u, x, y, z, v such that w = uxyzv, x or z have at least
one marked position, x, y, and z together have at most n marked positions,
and for all i ∈ N, uxiyziv ∈ L.

Exercise 31.2 Prove the Ogden lemma. (Hint: the proof is similar to the
one of the pumping lemma. When constructing the path, nodes such that
both subtrees contain marked positions play a crucial role.)

Exercise 31.3 Let COPY = {ww | w ∈ {0, 1}∗}. Show that COPY is not
context-free.

Excursus: Are programming languages context-free?

We saw a context-free grammar for our programming language WHILE. In general,
context-free languages describe the structure of computer programs quite well: It
is easy to ensure that every begin has a corresponding end, that the structure of
every arithmetic expression is correct, etc. But there is one thing that context-free
grammars cannot describe. Consider the following simple program int x; x := 0.
It declares x as an integer and then sets x to zero. Consider x as a place holder
and replace it by an arbitrary string. In every typed programming language that
I am aware of, the program above is considered to be correct whereas programs of
the form int x; y := 0 with x 6= y are not correct. But this is essentially the COPY
language from Exercise 31.3. So context-free languages cannot ensure that every
variable that is used is also declared.

Compilers of very complex languages, like C++, have to be really powerful. It
can be shown that every C++ compiler necessarily is a universal WHILE program,
see the reference below.

Martin Böhme, Bodo Manthey. The computational power of compiling C++. Bul-
letin of the European Association for Theoretical Computer Science, 81:264-270,
October 2003.
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32 Pushdown automata

Type-3 languages are the regular languages, i.e., languages that are recog-
nized by a (deterministic or nondeterministic) �nite automaton. Are there
(abstract) machines that characterize type-2 languages?

32.1 Formal de�nition

A pushdown automaton is a nondeterministic �nite automaton that we equip
with an additional stack. Alternatively, we can view a pushdown automaton
as a restricted 2-tape Turing machine. One tape contains the input. This
tape is oneway and read-only, that is, the Turing machine cannot move its
head to the left and whenever it reads a symbol it has to write the same
symbol. The second tape works like a stack: Whenever the Turing machine
moves its head to the right, it has to erase the content of the current cell by
a �. There are no restrictions if the Turing machine moves its head to the
left on the second tape.

De�nition 32.1 A (nondeterministic) pushdown automaton is described by
a tuple M = (Q,Σ,Γ, δ, q0,#, Qacc) where

1. Q is a �nite set, the set of states,

2. Σ ⊆ Γ is a �nite set, the input alphabet,

3. Γ is a �nite set, the stack alphabet,

4. δ : Q× (Σ ∪ {ε})× Γ→ Pfin(Q× Γ∗) is the transition function
(For a set A, Pfin(A) here denotes the set of all �nite subsets of A),

5. q0 ∈ Q is the start symbol,

6. # ∈ Γ \ Σ is the bottom symbol of the stack, and

7. Qacc is the set of accepting states.

At the beginning of a computation, the input w ∈ Σ∗ is standing on the
input tape and the head is on the �rst symbol of w. The only symbol in the
stack is #.1 The state of the automaton M is q0.

1The pushdown automaton may write the symbol # on the stack if it wants but it does
so at its own risk.
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32.1. Formal de�nition 263

(q′, y) ∈ δ(q, σ, γ) means that ifM is in state q, reads σ on the input tape,
and γ is the top symbol on the stack, then M can go to state q′ and replace
the top symbol γ by the symbols y = y1y2 . . . yt where y1 becomes the new
top symbol. (This essentially means that we pop γ and then successively
push yt, . . . , y1.) This operation can simulate a pop operation by choosing
y = ε and a push(τ) operation by setting y = τγ.

(q′, y) ∈ δ(q, ε, γ) means that ifM is in state q and γ is the top symbol of
the stack, then M might go to state q′ and replace γ by y as above without
reading any symbol from the input (�ε-transition�).

A con�guration ofM is a triple from Q×Σ∗×Γ∗. (q, v, z) means thatM
is in state q, v is the remainder of the input that M has not read so far, and
z is the current content of the stack. The �rst symbol z1 of z is supposed to
be the top symbol of z.

De�nition 32.2 1. A con�guration of a pushdown automatonM = (Q,Σ,Γ, δ, q0,#, Qacc)
is a triple in Q× Σ∗ × Γ∗.

2. The start con�guration on input w ∈ Σ∗ is (q0, w,#).

3. We de�ne a relation `M on the set of con�gurations as follows:

(q, v1 . . . vn, z1 . . . zm) `M

{
(q′, v2 . . . vn, y1 . . . ytz2 . . . zm) if (q′, y1 . . . yt) ∈ δ(q, v1, z1)

(q′, v1 . . . vn, y1 . . . ytz2 . . . zm) if (q′, y1 . . . yt) ∈ δ(q, ε, z1)

Above, m ≥ 1 and in the �rst line of the case distinction, n ≥ 1.

4. `∗M denotes the transitive and re�exive closure of `M .

De�nition 32.3 1. A pushdown automaton M = (Q,Σ,Γ, δ, q0,#, Qacc)
accepts a word w by empty stack if (q0, w,#) `∗M (q, ε, ε) for some
q ∈ Q.

2. N(M) = {w ∈ Σ∗ |M accepts w by empty stack}.

3. M accepts w by accepting state if (q0, w,#) `∗M (q, ε, z) for some
q ∈ Qacc and z ∈ Γ∗.

4. L(M) = {w ∈ Σ∗ |M accepts w by accepting state}.

Note that in general L(M) 6= N(M). But we will see that for every
pushdown automaton M , there is another pushdown automaton M ′ such
that L(M) = N(M ′) and vice versa.

Exercise 32.1 Show that if we modify the transition function to δ : Q ×
(Σ ∪ {ε}) × (Γ ∪ {ε}) → Q × (Γ ∪ {ε}) where (q′, γ) ∈ δ(q, σ, ε) means that
we append γ to the stack without reading the top symbol of the stack, then
we still can simulate pushdown automata as above.
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push

1, 1; 11
1, 0; 10
0, 1; 01
0, 0; 00
0,#,0#
1,#,1#

pop
ε, #, #
ε, 0; 0
ε, 1; 1

0, 0; ε
1, 1; ε

end
ε, #; ε

Figure 32.1: The pushdown automaton for {xxrev | x ∈ {0, 1}∗}.

As we did for nondeterministic �nite automata, we can de�ne the com-
putation tree of M on w. The root of the tree is labeled with the start
con�guration (q0, w,#). Whenever we have a node that is labeled with a
con�guration c and c1, . . . , ct are the con�gurations with c `M cτ , 1 ≤ τ ≤ t,
then c gets t children, each labeled with c1, . . . , ct. There might be a node
in the tree that is already labeled with cτ but we nevertheless always add a
new node.

Example 32.4 Figure 32.1 shows a pushdown automaton M with L(M) =
{xxrev | x ∈ {0, 1}∗}. (Since the automaton was constructed with the JFLAP
tool, the bottom symbol of the stack is denoted by Z.) It has three states,
push, pop, and end. In the state push, it pushes the symbol read on the
stack. Then it can nondeterministically go to the state pop. We say that
M nondeterministically guesses the middle of the word. In the state pop,
M pops the symbols from the stack and compares them with the remaining
symbols of the input. If there is a mismatch, there is no possible transition
and the computation stops. If the automaton reaches the Z, then it pops the
Z without reading the input symbol and goes to the accepting state end. If
M read the whole input, then it accepts.

© Markus Bläser 2007�2021



32.2. Empty stack versus accepting state 265

Why do �nite automata have no con�gurations?

Well, they have. A con�guration consists of the state and the
part of the input not read so far. But the δ∗ function provides
the same information as the ` relation does in the corresponding
reachability graph. So there is no need to de�ne con�gurations for
�nite automata.

32.2 Empty stack versus accepting state

Lemma 32.5 For every pushdown automaton M there is a pushdown au-
tomaton M ′ with L(M) = N(M ′).

Proof overview: M ′ simulatesM step by step. WhenM enters an accepting
state, then M ′ can enter a new state s by an ε-transition. In s, M pops all
the symbols from the stack until it is empty.

There is only one problem: In a nonaccepting computation of M , M
might empty the stack. This does not matter for M , but if now M ′ empties
the stack in the simulation it might accept an input thatM does not accept.
To avoid this, M ′ replaces # by #$ in the beginning, i.e., it places a new
symbol $ at the bottom of the stack. This symbol can only be removed in
the state s. In this way, M ′ never empties the stack while simulating M .

Exercise 32.2 Prove Lemma 32.5 formally.

Lemma 32.6 For every pushdown automaton M there is a pushdown au-
tomaton M ′ with N(M) = L(M ′).

Proof overview: M ′ simulates M step by step. Whenever M ′ empties the
stack, M should enter a new accepting state by an ε-transition. However,
when M ′ empties the stack, then the computation stops since δ is only
de�ned if there is a symbol on the stack. To avoid this, we again place a new
symbol at the bottom of the stack.

Exercise 32.3 Prove Lemma 32.6 formally.
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33 Pushdown automata versus

context-free grammars

33.1 Pushdown automata can simulate context-free

grammars

In this section, we show that nondeterministic pushdown automata recognize
the context-free languages. We start with a simple observation:

Observation 33.1 Let M be some pushdown automaton and let (q, w, yz)
be some con�guration where y, z ∈ Γ∗. If (q, w, yz) `∗ (p, v, z) and no symbol
of z is ever removed from the stack during the corresponding computation,
then (q, w, y) `∗ (p, v, ε).

Theorem 33.2 For every context-free grammar G = (V,Σ, P, S), there is a
pushdown automaton M such that L(G) = N(M).

Proof overview: The automaton tries to construct a left derivation for a
given word w. M starts with S on the stack. If the top symbol of the stack
is a variable A, then M nondeterministically chooses some A → y ∈ P and
expands A by replacing it by y. If the top symbol of the stack is a terminal,
then we know that this terminal will always stay in the �rst position since
it is not preceeded by any variable. Thus this symbol has to match the
currently �rst symbol of the input. We read this symbol and compare it
with the top symbol of the stack. If they are the same, then we pop the top
symbol and go on. If they di�er, then M stops (and does not accept).

Proof. We set M = ({q},Σ, V ∪ Σ, δ, q, S, ∅). M has only one state.
Since we accept by empty stack, we do not need any accepting states. The
transition function δ is de�ned as follows

δ(q, ε, A) = {(q, y) | A→ y ∈ P} for all A ∈ V
δ(q, σ, σ) = {(q, ε)} for all σ ∈ Σ.

Now we have to show: For all w ∈ Σ∗, w ∈ N(M) ⇐⇒ w ∈ L(G)

�⇐=�: Let S = y1 ⇒G y2 ⇒G . . .⇒G yn = w be a left derivation. We claim
that

(q, w, S) `∗M (q, vi, zi) for all 1 ≤ i ≤ n
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where vi and zi are de�ned by

yi = uizi, ui is the longest pre�x of yi with ui ∈ Σ∗

w = uivi.

The proof of the claim is by induction on i.
Induction basis: We have y1 = S. Hence u1 = ε and v1 = w. (q, w, S) `∗
(q, w, S) certainly holds.
Induction step: By the induction hypothesis, (q, w, S) `∗ (q, vi, zi). We have
to show that (q, w, S) `∗ (q, vi+1, zi+1). For this, it is su�cient to show that
(q, vi, zi) `∗ (q, vi+1, zi+1).

By construction of ui, zi starts with a variable, say A. The step yi ⇒ yi+1

replaces the variable A by some righthand side of a production in P , say
A → x. We have (q, x) ∈ δ(q, ε, A) by construction, hence M can replace
A on the stack by x. With the transitions (q, ε) ∈ δ(q, σ, σ), M can now
pop all the terminals on top of the stack until it reaches the �rst variable.
(Note that all input symbols must match the symbols on the stack since we
are mimicking a valid derivation.) Hence (q, vi, zi) `∗ (q, vi+1, zi+1). This
�nishes the proof of the claim.

From the claim, the �⇐=�-direction immediately follows by noting that
vn = ε, since yn = w and zn = ε.

�=⇒�: We claim that for all x ∈ Σ∗ and A ∈ V

(q, x,A) `∗M (q, ε, ε) implies A⇒∗G x.

The proof is by induction in n, the number of steps that M makes.
Induction basis: If n = 1, then A→ ε ∈ P and x = ε. But then A⇒∗ x.
Induction step: Since the top symbol of the stack is a variable, the �rst step of
M replaces A by some righthand side of some production. Let A→ a1 . . . ak
be the chosen production with aκ ∈ V ∪Σ, 1 ≤ κ ≤ k. In the next n−1 steps,
M consumes the whole input and eventually removes the symbol a1, . . . , ak
from the stack. Decompose x = y1y2 . . . yk with yi ∈ Σ∗, 1 ≤ i ≤ k, such that
y1y2 . . . yκ are the symbols read when aκ is removed from the stack. (Here
we mean the occurrence of aκ that is put on the stack when we replace A in
the beginning.)

By Observation 33.1,

(q, yκyκ+1 . . . yk, aκ) `∗ (q, yκ+1 . . . yk, ε), 1 ≤ κ ≤ k.

This implies
(q, yκ, aκ) `∗ (q, ε, ε) 1 ≤ κ ≤ k.

By the induction hypothesis, aκ ⇒∗ yκ if aκ ∈ V . If aκ ∈ Σ, then aκ = yκ
and aκ ⇒∗ yκ trivally holds. Altogether

A⇒ a1 . . . ak ⇒∗ y1 . . . yk = x.

The �=⇒�-direction now follows from the claim by setting A = S and
x = w.

© Markus Bläser 2007�2021



268 33. Pushdown automata versus context-free grammars

33.2 Context-free grammars can simulate pushdown

automata

Theorem 33.3 For every pushdown automaton M = (Q,Σ,Γ, δ, q0,#, ∅),
there is a context-free grammar G with N(M) = L(G)

Proof overview: G should generate a word w i� M started in (q0, w,#)
reads w completely and empties its stack, i.e, (q0, w,#) `∗M (p, ε, ε) for some
p ∈ Q. We constructG by solving a more general problem. For every q, p ∈ Q
and γ ∈ Γ, G has a variable [q, γ, p] such that [q, γ, p]⇒∗G w i� M started in
(q, w, γ), reads w completely and empties its stack, i.e, (q, w, γ) `∗M (p, ε, ε).

Then w ∈ N(M) i� [q0,#, p] ⇒∗ w for some p ∈ Q. The reason why
we solve the more general problem is that the original problem is split into
several instances of the more general problem, which we solve recursively.

Proof. We de�ne G = (V,Σ, P, S) as follows:

� V = {S} ∪ {[q, γ, p] | q, p ∈ Q, γ ∈ Γ}.

� There are �starting rules�

S → [q0,#, p]

for every p ∈ Q.

� And there are �transition rules�

[q, γ, rk]→ σ[r, y1, r1][r1, y2, r2] . . . [rk−1, yk, rk]

for every σ ∈ Σ ∪ {ε}, γ ∈ Γ, and for every (r, y1y2 . . . yk) ∈ δ(q, σ, γ)
and for every possible sequence of states r1, . . . , rk ∈ Q. (If k = 0,
then the production is just [q, γ, r]→ σ.)

We claim that

[q, γ, p]⇒∗ w ⇐⇒ (q, w, γ) `∗ (p, ε, ε).

for all q, p ∈ Q, γ ∈ Γ, and w ∈ Σ∗.

�⇐=�: The proof is by induction on n, the number of steps of M .
Induction basis: If n = 1, then (p, ε) ∈ δ(q, w, γ) and w ∈ Σ ∪ {ε}. By
construction, [q, γ, p]→ w ∈ P .
Induction step: Assume that (q, w, γ) `∗ (p, ε, ε) is a computation of n
steps. Let (q, w, γ) ` (r0, v, y1 . . . yk) be the �rst step. Then w = σv for
some σ ∈ Σ ∪ {ε} and (r0, y1 . . . yk) ∈ δ(q, σ, γ).

By construction, there is a production

[q, γ, rk]→ σ[r0, y1, r1][r1, y2, r2] . . . [rk−1, yk, rk]
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Decompose v = u1 . . . uk with uκ ∈ Σ∗, 1 ≤ κ ≤ k in such a way that
u1 . . . uκ is the input read when yκ is removed from the stack. (We here
mean the occurrence of yκ that is put on the stack in the �rst step.) By
Observation 33.1 above,

(rκ−1, uκ, yκ) `∗ (rκ, ε, ε), 1 ≤ κ ≤ k.

Now we can apply the induction hypothesis, since the computations are
shorter than n. Thus we get

[rκ−1, yκ, rκ]⇒∗ uκ, 1 ≤ κ ≤ k.

Altogether, we get

[q, γ, rk]⇒ σ[r, y1, r1] . . . [rk−1, yk, rk]⇒ σu1 . . . uk = w.

�=⇒�: Is left as an exercise.

Now the theorem follows from the claim, since

S ⇒∗ w ⇐⇒ [q0,#, p]⇒ w for some p ∈ Q
⇐⇒ (q0, w,#) `∗ (p, ε, ε).

Exercise 33.1 Prove the =⇒-direction of the proof of the claim in Theo-
rem 33.3.

Bronze rule of nondeterminism

Always remember the silver rule of nondeterminism

Nondeterministic Pushdown automata are interesting, because they pre-

cisely characterize the context-free languages, not because we can build

them in an e�cient way. Interesting for compiler construction etc. are de-

terministic pushdown automata. But there are context-free languages that

are not recognized by a deterministic pushdown automaton.
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Type-2 languages (context-free languages)

Let L ⊆ Σ∗. The following statements are equivalent:

� There is a context-free grammar (type-2 grammar) G with L =
L(G).

� There is a context-free grammar G with ε-productions with
L = L(G).

� There is a context-free grammar G in Chomsky normal form
with L \ {ε} = L(G).

� There is a nondeterministic pushdown automaton M with
L(M) = L.

� There is a nondeterministic pushdown automaton M with
N(M) = L.

33.3 Deterministic context-free languages

De�nition 33.4 A pushdown automatonM = (Q,Σ,Γ, δ, q0,#, Qacc) is de-
terministic if

1. |δ(q, σ, γ)| ≤ 1 for all q ∈ Q, σ ∈ Σ ∪ {ε}, and γ ∈ Γ.

2. If |δ(q, σ, γ)| = 1 for some σ ∈ Σ, then δ(q, ε, γ) = ∅.

Given the state, the current symbol of the input, and the top symbol of
the stack, a deterministic pushdown automaton has at most one choice. If
M is in state q and the top symbol of the stack is γ and M has the choice to
make an ε-transition, then no other transition is possible, because otherwise
we could simulate any nondeterministic pushdown automaton.

The advantage of deterministic pushdown automata is that the word
problem (given w and M , is w ∈ L(M)?) is decidable in linear time (by the
automaton itself!). M might run into an in�nite loop but such loops can be
easily detected (and removed) in advance.

For deterministic pushdown automata it makes a di�erence whether they
accept by empty stack or by accepting state.

Theorem 33.5 (without proof) Let L ⊆ Σ∗. Then the following two
statements are equivalent:

1. L = N(M) for some deterministic pushdown automaton M .
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2. L = L(M) for some deterministic pushdown automaton M and no
x ∈ L is a proper pre�x of some y ∈ L

If we want to accept by empty stack and do not want to lose any compu-
tational power compared to accepting by accepting state, we have to mark
the end of the input, that is, instead of L, we construct an automaton for
L{$} where $ is some new symbol. This new language L{$} has the property
that no x ∈ L{$} is a proper pre�x of a y ∈ L{$}.

De�nition 33.6

DCFL = {L | L = L(M) for some deterministic

pushdown automaton M}.

There are context-free languages that are not in DCFL. L = {xxrev |
x ∈ {0, 1}∗} is such an example. The proof that L /∈ DCFL is rather elab-
orate. We will not present it here. The idea behind this is the following:
A deterministic pushdown automaton M for L has to accept 0n110n. To
check whether 0n110m is in L, M pushes the �rst n zeros on the stack and
then pops a zero for every 0 it reads after the 11. After this it has lost all
information about n. M also has to accept 0n110n0n110n. But it cannot
distinguish this from 0n110n0m110m, since after reading 0n110n it lost all
information about n. (This is not a formal proof! Never write something
like this in an exam.)

On the other hand, there are deterministic context-free languages that are
not regular. L′ = {x$xrev | x ∈ {0, 1}∗} is an example. The di�erence to L
above is that we here tell the automaton the middle of the word. Figure 33.1
shows a deterministic �nite automaton for L′.

Theorem 33.7 REG ( DCFL ( CFL.

33.4 Further exercises

Exercise 33.2 Show that a pushdown automaton with two stacks can sim-
ulate a 1-tape Turing machine.
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push

1, 1; 11
1, 0; 10
0, 1; 01
0, 0; 00
0,#,0#
1,#,1#

pop
$, #, #
$, 0; 0
$, 1; 1

0, 0; ε
1, 1; ε

end
ε, #; ε

Figure 33.1: The pushdown automaton for {x$xrev | x ∈ {0, 1}∗}.
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